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Abstract. This paper presents the team AutonOhm and their solutions
to the challenges of the RoboCup@Work league. The hardware section
covers the robot setup of Ωmnibot - V4 (Ωmeg4), which was developed
using knowledge from previous robots used by the team. Custom solu-
tion approaches for the @Work navigation, perception, and manipulation
tasks are discussed in the software section, as well as a control architec-
ture for the autonomous task completion.

1 AutonOhm@Work

History The AutonOhm@Work team at the
Nuremberg Institute of Technology was founded
in September 2014 and has since participated in
various tournaments and was able to win 3 local
and 4 global events* (see tab. 1). It consists of a
mix of bachelor, master and phd students with
various fields of research (see tab. 2).
Robot Since the primarily used robot model,
the KUKA Youbot, was discontinued and the
only available youbot broke down at the World
Cup in 2018, the team started developing a cus-
tom robotic platform called Ωnibot, which has
been continously improved and reworked since
2019.
Contributions to the League We’ve
started to bundle our knowledge in a reposi-
tory [22], where many aspects of our solution
will be publicly available. With this repository,
we want to share our knowledge to provide
other researchers with a basic foundation for au-
tonomous robots and task completion.

Fig. 1: Team AutonOhm 2023
with Ωmeg4 (RC Bordeaux)
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Table 1: History of AutonOHM@Work

Year Location Event Result Robot

2015 Magdeburg (Germany) RC German Open 5th Youbot V1.2

2016 Leipzig (Germany) RC World Cup 5th Youbot V1.3

2017 Magdeburg (Germany) RC German Open 1st* Youbot V1.4

2017 Nagoya (Japan) RC World Cup 1st* Youbot V1.5

2018 Magdeburg (Germany) RC German Open 1st* Youbot V1.6

2018 Montreal (Canada) RC World Cup 1st* Youbot V1.6

2019 Magdeburg (Germany) RC German Open 6th Ωmnibot V1

2019 Sydney (Australia) RC World Cup 5th Ωmnibot V1.2

2020 Virtual Online RC Asia Pacific 3rd Ωmnibot V2

2021 Virtual Online RC World Cup 1st* Ωmnibot V2.1

2021 Bologna (Italy) SciRoc Ep5 1st* Ωmnibot V2.2

2022 Bangkok (Thailand) RC World Cup 1st* Ωmn3

2023 Bordeaux (France) RC World Cup 4th Ωmeg4

Table 2: Team AutonOHM@Work 2024

Member Field of Study Tasks

Marco Masannek Cognitive Robotics (Phd) Project Lead
Mentor
Tech Lead

Sina Steinmüller Media Engineering (B-Eng) Team Lead
Marketing
Software

Hannes Haag Mechatronic Systems (M-Sy) Hardware Lead

Usukh-Erdene Batbold Mechatronics (B-Eng) Hardware Dev

Rolf Schmidt Perception Sensors (Phd) Tech Support

Dong Wang Perception Sensors (Phd) Software Management
Localization
Obstacle Detection

Tim Lachmann Media Engineering (B-Eng) Arm Controller

Lukas Fuchs Mechatronics (B-Eng) Gripper

Hannes Duske Mechatronic Systems (M-Sy) Robotic Manipulation

Dennis Trescher Applied Research (M-Sc) Object Perception

Kardelen Arpa Media Engineering (B-Eng) Marketing
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2 League Description

The RoboCup@Work league, established in 2012, focuses on the use of mobile
manipulators and their integration with automation equipment for performing
industrial-relevant tasks [1]. Participating robots must be able to navigate in a
previously known arena, reach different service areas and perform manipulation
tasks. Therefore, each robot must be able to correctly identify a requested ob-
ject on various background surfaces and pick and place the objects that vary in
shape, appearance and weight. With low participation numbers of teams after
the COVID-19 pandemic in the first on-site robocup at the world cup 2023 in
Bangkok, Thailand, major changes to the structure of the competition have been
made with the intention to ensure the future of the league. The main idea is to
make setting foot in the league more easy for newer teams, while still keeping the
ambition to target scientific problems in robotics in the more advanced stages
of the competition. Therefore, the competition has been split into two main sec-
tions, the beginner and the advanced section. The Beginner Section isolates or
simplifies some of the requirements for the robots so teams without much experi-
ence can successfully participate without having a competitive setup in relation
to the more advanced teams. The Advanced Section introduces a new (more
difficult) set of objects, aswell as incorporating Precise Placement and Rotat-
ing Table tasks into the newly introduced Advanced Transportation Tests. The
standalone Tests have therefore been removed from the competition schedule. As
these changes increase the upper treshold of skill required to do all tasks without
making mistakes, the option to replace the real objects with april-tagged cubes
has been introduced to relax the problem of object detection and manipulation.

3 Hardware Description

Version 4 of our Ωnibot, Ωmeg4, is built on a customized Evocortex[3] R&D
platform. The platform is equipped with an omnidirectional mecanum drive, an
aluminum chassis capable of carrying loads up to 100 kg and a Li-Ion Battery
with a nominal voltage of 48V. In our configuration, the platform does not
include any sensors, power management or computation units, which means it
only serves as our base. Every further component needed was mounted in or on
the chassis.

3.1 Sensors

Lidars Mapping, navigation and the detection of physical obstacles is dependent
on sensory detection of the environment. Three 2D LiDAR sensors from Sick were
used in the previous version of the robot platform (Ωmn3). The optimized version
uses the Rplidar S2E from Slamtec, a 360◦2D LiDAR sensor, which is mounted
centric below the robot. The positioning of the Mecanum wheels results in areas
that cannot be detected by the laser scanner (blind spots). For this purpose, two
infrared sensors provided by Evocortex are attached to each corner of the robot
platform to fill the sensing gap (see fig. 4).
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Fig. 2: Image of our Ωmeg4

Fig. 3: Robot bottom

Fig. 4: Laser scan area

Cameras We use an Intel RealSense D435 3D-
camera for the object perception. It is attached
to the sensorhead so that it can be positioned
above the workstations to detect the surface and
the position of the objects.
For barriertape detection, multiple ELP USB
fisheye cameras can be mounted around the
robot, which enables a 360° view. During the
competition, we usually rely on a single fisheye
camera mounted on the sensorhead because we
have observed that all the barriertape is still de-
tected.

Fig. 5: 360◦fisheye camera setup

3.2 PC

The newly introduced neural networks require a GPU for computation onboard
of the robot. As embedded GPU chips such as the Nvidia Jetson TX2 do not
provide enough processing power for the task optimization and navigation algo-
rithms, we designed a custom PC solution consisting of an AMD Ryzen 7 5700X
processor, a mini-ATX mainboard and a low power Nvidia A2000 graphics card,
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which is connected to the mainboard with a riser cable. This enabled us to build
a flat case with both the mainboard and the graphics card safely mounted inside.
The form factor of the case makes it possible to slide it into the robot’s back,
similar to a server rack.

3.3 PSU

We developed a custom PSU circuit board containing emergency switches for the
actuators, a main power switch and voltage controllers for 5V, 12V and 24V. It
is equipped with a custom designed plug system with selectable voltage, so every
peripheral device can be connected using the same plug type. In addition to that,
we use an extra DC-DC controller for the power supply of the manipulator, as
its power consumption exceeds the limits of the onboard controllers. For the
custom PC system, we use a standard 250W automotive ATX power supply.

3.4 Manipulator

Arm We use the 6 DOF Cobot ReBeL from igus as the arm (see fig. 2). We
decided on this arm because it could be realized within the budget and integra-
tion into the system was possible without an external control box for the arm.
This saves space on the platform itself and reduces the weight of the platform
compared to other options.

Sensorhead Our sensorhead concept realizes
a plug-in solution for a variety of robotic arms.
Our all-in-one design includes a customized par-
allel gripper with tilting fingers, a 3D camera
for object detection, a fisheye camera for barri-
ertape detection, a status led ringlight and cus-
tomized electronics, which allows us to connect
the sensorhead to any robot using a USB and
power connection.

Fig. 6: Sensorhead

Gripper Our customized parallel gripper is equipped with a guide rail for the
fingers which allows for a circular tilting motion towards the maximum open
angle, as well as a specially developed linear gear drive that converts the circular
motion of a Dynamixel MX28 motor to a linear motion of the finger sleds.

We use customized fin-ray fingers printed with TPU and foam rubber to
allow for firm and object enclosing grasping motions. The force feedback from
the fingers is transferred to the motor via the linear gears and can be used for
grip detection or to calculate the grasping force.
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4 Software Description

We use Linux Ubuntu 20.04 and ROS Noetic [4] as our operating systems. A
custom software architecture was created to simplify the overall structure and
to regain system flexibility. Our new design is displayed in fig. 7.

The idea derives from the Model-View-Controller software design pattern,
which is adjusted to the usage of the ROS framework. Regarding the frequent use
of hardware, an additional driver layer is added below the model layer. Models
that need data from hardware, e.g. sensor data, can get them from the individual
driver programs. The view layer is realized with each program using interfaces to
RVIZ or simple console logging, which makes custom implementations obsolete.
Components that require additional control features, such as the robot arm,
have dedicated controllers providing simple interfaces for the brain layer, which
is responsible for the actual task interpretation and execution. The individual
layer components will be explained in the following sections.

Fig. 7: Software Architecture - BCMD

4.1 Driver

The driver layer only contains actual hardware control programs, such as the
sensor interfaces. The idea here is that the whole layer can be replaced with
simulation tools such as Gazebo.

Base Platform The base platform driver converts incoming cmd vel messages
into wheel rpm and calculates the odometry from obtained rpm. It stops the
robot automatically if the incoming commands time out to prevent uncontrolled
movements. An additional twist mux node throttles incoming commands from
the joy controller, move base and the pose approach.
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Laser Scanner The rplidar node provides the interface to the scanner with
given IP address and scan area configuration. However, as the Lidar is prone
to measurement errors such as shadows or reflections, custom laser filters are
applied to the raw data for later computation.

Infradar The Infradar driver from our sponsor Evocortex enables real time
data-reading from 8 infradar sensors via CAN-BUS and publish Infradar data
as 3d point clouds.

Camera We use the Intel Realsense SDK with the provided ROS wrapper. The
fisheye cameras are accessed via the ROS usb cam package[20].

Dynamixel Workbench The parallel gripper is controlled with a controller
instance of the dynamixel workbench package. It provides access to motor vari-
ables (e.g. position, torque, ..) which are used for precise grip controls.

Igus Rebel We use the igus rebel [25] 6-DoF driver to control the robot arm.
The driver follows a given trajectory and provides feedback about its position,
velocity and accelerations during the trajectory execution.

4.2 Model

Our models contain all algorithms used to challenge the problems of the tasks
in the @Work league. This includes localization, navigation and perception. The
task planner is not included as a model but in the brain layer because it is more
convenient to attach it directly to the task manager, as discussed in section 4.4.

Laser Filter As mentioned in section 4.1, we filter the raw laser data before
computing. The first filters are simple area filters to delete the robot’s wheels
from the scan. The second filter is a custom jumping point filter implementation.
We faced problems with reflections of the alu profile rails used for the walls of
the arena, which caused the robot to mark free space as occupied. The filter
calculates the x- and y-position for each scan point and checks if there are
enough neighbors in close range to mark a point as valid. All points with less
than n neighbors in the given range will be handled as measurement errors and
therefore deleted.

Ohm PF For localization in the arena, we use our own particle filter algorithm.
Its functionality is close to amcl localization, as described in [5] and [13]. The
algorithm is capable of using multiple laser scanners and an omnidirectional
movement model. Due to the Monte Carlo filtering approach, the localization is
robust and accurate enough to provide useful positioning data to the navigation
system. Positioning error with the particle filter is about 6 cm, depending on the
complexity and speed of the actual movement.
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Move Base We use the ROS navigation stack [10] for global path planning and
the local path control loops. Path cost calculations are performed by using the
costmap 2D plugins. The base layer is a 2D laser map created with gmapping
[11,12]. On top of that, we use a barriertape map layer which contains all detected
barriertape points. For local obstacle avoidance, we added an obstacle layer which
includes laser data from laser scanner and and our own developed 3D infradar
layer for infradar sensors. All layers are combined in the final inflation layer.
Global path planning is computed with the mcr global planner [17] while the
path is executed using the TEB local planner [6,7,8,9]. As the local planner is
not able to precisely navigate to a given goal pose, we set the goal tolerance
relatively high. Once we reached our goal with move base, we continue exact
positioning with our custom controller, the pose approach.

MoveIt We use the MoveIt [26] motion planning library to calculate inverse
kinematics and trajectories for the robot arm and connect it to the igus driver.

Pose Approach The pose approach package utilizes a simple PID controller to
move the robot to a given pose. It utilizes the robot’s localization pose as input
and the target pose as reference. As the controller does not consider costmap
obstacles, the maximum distance to the target is 20 cm to prevent collisions. A
laser monitor algorithm checks for obstacles in the current scan and stops the
robot if necessary.

Fisheye rectification The raw fisheye images need to be rectified to be used
as input for the detection network. A specific image pipeline fork [21] is used,
which contains this functionality.

NN - Barriertape For the barriertape detection, we use a U-Net with manually
labelled datasets. The ROS node receives raw input images and returns a masked
binary image. We have ported the network node from Python to C++ to increase
the detection rate from around 5Hz up to 20Hz.

NN - Objects The detection and classification of objects is done with a fine-
tuned yolo-v7 network [23]. The node receives a raw input image and returns
a vector with the ID, bounding box and confidence of all objects that were
found. As the generation of a dataset specially for the contest would require
more than 10,000 labelled images, which would require a high amount of time
to create, we have implemented an automated dataset creation method using
Blender and Python. It basically changes environments, illumination, camera
and object pose as well as object appearance in pre-defined bounds. The script
creates rendered images as well as bounding box, segmentation and 6DoF labels.
With this data generation method, data which is quite similar to the original
scene can be created, as well as rather abstract data (Figure 8). We are currently
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also working on data generation for deformable objects, such as the objects used
in the SciRoc Challenge 2021 - Episode 5: Shopping Pick & Pack [19].

Using an original to artificial image ratio of 1:10, we achieved a detection
reliability of over 90% for most scenes. Our data generation scripts are public
and free to use [15]. The trained network is converted to TRT-Engine using
code from the TRT-YOLO-App from the Deepstream Reference Apps [16]. This
increases performance as the CUDA cores will be used more efficient, and makes
a detection rate of up to 60Hz possible. In the future, other network types such
as segmentation networks and 6DoF networks will be explored.

(a) (b) (c)

Fig. 8: abstract image (a) corresponding mask label (b) abstract image with
bounding box label (c)

As an alternative detection there is also an AprilTag detection which imple-
ments a ROS wrapper of the AprilTag 3 visual fiducial detection algorithm [24].
It provides full access to the core AprilTag 3 algorithm’s customisations and
makes the tag detection image and the detected tags’ poses available via ROS
topics to detect objects via apriltags.

4.3 Controller

Model nodes that require additional control features are connected to control
nodes, which then provide interfaces for the brain layer. They use our robot-
custom msgs interfaces to share information about the subtask, workstation, or
objects. Nodes may have specific subtask types implemented into their behaviour
to react optimized.

Joy Control We use a PS5 joystick to move our robot manually (e.g. for
mapping). For this, we have implemented a custom teleop joy node with similar
functionality. We also plan to implement the usage of the PS5 feedback functions
such as rumble.

Barriertape Control The barriertape controller is a custom mapping imple-
mentation for visual obstacles. It throttles the input images to the barriertape



10 TDP 2024 Team AutonOhm

network and computes the masked images. Looping through multiple cameras
enables us to perform 360◦barriertape detection.

Received masked images are converted into a point cloud with a predefined
density. This pointcloud is then transformed from the individual camera frame
into the global map frame. Afterwards, all new points are compared to the ex-
isting map points. New barriertape points that are already occupied are ignored
to save computation. As we faced problems with image blur and therefore re-
sulting non-precise barriertape detection, we also compute pixels that mark free
space (no barriertape detected). They are compared to existing points, which
get deleted if they overlap.

The whole map is converted into an occupancy grid and then published
periodically, so it can be included in the costmap of the move base node. The
node is controlled via service calls, which enable or disable the detection loop.
The map is always published once the node finishes the init process.

Arm Control The arm is controlled via ROS services or a development GUI
for debugging. For the solution of the inverse kinematics we use MoveIt, which
works together with a custom arm controller. When using the services the arm
controller receives the target position and checks whether the arm should move
to a trajectory via defined safety positions. MoveIt then controls the arm and
performs the calculations. The arm executes a full task using the given infor-
mation, which means, in case of a pick task, it moves the TCP to the object
position, closes the gripper, and stores the object. After the subtask finishes,
feedback of the exit status is returned to the caller.

Perception Control The perception control node is responsible for the work-
station analysis and object detection from a given scene (3D Pointcloud and
RGB image). First, the surface equation of the workstation is calculated using
the RANSAC [14] algorithm. If a valid result is obtained, raw images are sent to
the object perception network (4.2). All found objects are then localized using
the pinhole camera model, the workstation plane and the bounding box pixels.
Finally, the position is transformed into the workstation frame and saved. For
moving objects, multiple positions are recorded and then used to calculate the
movement equation with RANSAC.

4.4 Brain

The brain layer provides nodes which contain the intelligence of the robot, which
means the tracking of itself, its environment and the received tasks.

Worldmodel All data obtained about the robot’s environment is stored in the
worldmodel database. This includes the map, all workstation positions and all
detected objects on the workstations. The data can be accessed using service
calls.
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Status Monitor The status monitor keeps track of the robot itself. It saves
the current pose, inventory and state. The associated color code is sent to the
RGB LED driver node.

Task Manager The robot can receive tasks from multiple sources, such as the
RefBox or voice commands. In order to process different input formats, different
parsers are used to standardize the input for the task manager.

When the robot receives a new transportation task, it is analysed and planned
before the execution. All extracted subtasks are managed by the task manager
node, which replans the order of all subtasks. With the increasing numbers
of transportation tasks in the competition, high efficiency is crucial to achieve
perfect runs. The score of a single subtask is calculated considering expected
duration, points, and the risk of failure. These factors may change if certain
conditions are met, for example, the navigation time is set to zero if the robot
already is at the given position.

Before even starting the planning of subtasks, the received task is analysed
for impossible tasks. This would be the case if the target workstation is unknown
or unreachable, or an object is lost. All subtasks that cannot be executed are
moved to a deletion vector.

A self developed planning algorithm then calculates the raw score of the
remaining subtask vector, followed by a simple nearest neighbour search (NN).
This result is then fed to a recursive tree calculation method, which searches
for the optimal solution. A branch is only fully calculated if the score sum does
not exceed the best solution found with the NN. This way, we have achieved an
overall planning time for the BTT3 challenge (14 subtasks) of around 10s. For
subtask numbers below 12 the planning only takes 2s. If the task load exceeds
14 tasks, we skip the recursive strategy, as planning time grows exponentially
and therefore cannot produce results in the given time frame of a run.

Fig. 9: Task Manager States

After planning, every subtask is sent to the task executioner (section 4.4).
If the execution was not successful, the task is moved to a failed subtask vector
and deleted from the current working STV. The short planning times enable us
to replan every time a subtask fails, or new data is available. This is necessary
because even simple changes can cause serious errors in the intentional plan.
If certain paths are blocked, the navigation time for transportation tasks can
increase dramatically, causing a huge loss of efficiency. A final garbage collection



12 TDP 2024 Team AutonOhm

checks all deleted and failed subtasks for plausibility again and adds retries for
possible subtasks.

Task Executioner Subtasks that are sent to the Task Executioner get run
through an interpreter to extract the actions that are necessary for the task
execution. All actions are performed in custom states, which can be adjusted
via parameters at creation. The interpreter uses information from the status
monitor, the worldmodel and the given subtask to create substates accordingly.
The resulting state vector is iterated until finished or failed. While executing,
the node reads and modifies the data in the status monitor and worldmodel
package. This way, every change is immediately available for all other nodes too.

Fig. 10: Task Executioner - Subtask Interpretation

5 Conclusion and Future Work

During the last season, we optimized our robot concept and built a completely
new robot (Ωmeg4). The robot arm concept has been reworked and improved,
a new operation interface and sensor concept has been implemented, as well as
the step up at to 48V base voltage.

In the coming season we plan on improving our object detection by using
other network architectures such as segmentation, 6DoF and grasp detection
networks. We are also reworking our gripper concept to enable the use of force
feedback, which may benefit our task management system. We also want to
introduce performance monitoring, allowing us to identify bottlenecks and plan
future improvements. Finally, we plan to extend the above-mentioned repository
by adding more documentation as well as some theses from our students.

We are very much looking forward to the upcoming season, where we aim to
benchmark our systems performance at the RoboCup 2024 in Eindhoven.
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