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Abstract—Simultaneous localization and mapping is a critical
capability for autonomous systems. Traditional SLAM approaches
often rely on visual or LiDAR sensors and face significant chal-
lenges in adverse conditionssuch as low light or featureless en-
vironments. To overcome these limitations, we propose a novel
Doppler-aided radar-inertial and LiDAR-inertial SLAM frame-
work that leverages the complementary strengths of 4D radar,
FMCW LiDAR, and inertial measurement units. Our system in-
tegrates Doppler velocity measurements and spatial data into a
tightly-coupled front-end and graph optimization back-end to pro-
vide enhanced ego velocity estimation, accurate odometry, and
robust mapping. We also introduce a Doppler-based scan-matching
technique to improve front-end odometry in dynamic environ-
ments. In addition, our framework incorporates an innovative on-
line extrinsic calibration mechanism, utilizing Doppler velocity and
loop closure to dynamically maintain sensor alignment. Extensive
evaluations on both public and proprietary datasets show that our
system significantly outperforms state-of-the-art radar-SLAM and
LiDAR-SLAM frameworks in terms of accuracy and robustness.

Index Terms—QOdometry, Mapping, Localization, SLAM, Auto-
nomous Vehicle Navigation.
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I. INTRODUCTION

N THE pursuit of robust and reliable navigation so-

lutions, simultaneous localization and mapping (SLAM)
has emerged as a cornerstone technology that enables au-
tonomous systems to perceive and interpret their environ-
ment while estimating their own position. Traditional SLAM
methods often rely on visual or LiDAR sensors. Those
modalities, however, can be susceptible to poor lighting,
extreme weather, or featureless terrain. SLAM using radar
sensing has the potential to increase robustness to environ-
mental variability and operate effectively under challenging
conditions.

In recent years, integrating radar and LiDAR sensors with
inertial measurement units (IMUs) has improved the accu-
racy and reliability of SLAM systems [1], [2], [3]. Doppler
velocity from 4D radars and frequency-modulated continu-
ous wave (FMCW) LiDARs provides direct motion infor-
mation that, when fused with inertial data, enhances motion
estimation and mapping [4], [5]. However, reliable SLAM
in complex or dynamic environments remains challenging,
and most methods either focus on a single sensor type
or fail to fully exploit Doppler information in a unified
framework.

This paper presents a novel approach to Doppler-aided radar-
inertial and FMCW LiDAR-inertial SLAM, leveraging the com-
plementary capabilities of radar, FMCW LiDAR, and IMU.
By incorporating Doppler velocity measurements and spatial
data into the SLAM framework, we aim to achieve enhanced
odometry estimation and a more robust mapping process. The
proposed methodology is designed to operate in complex and
dynamic environments, offering a reliable solution for ground
vehicles.

The main contribution of this paper is a novel, unified SLAM
approach that combines a tightly-coupled front-end [1] with a
graph optimization back-end [2], seamlessly integrating IMU,
radar or FMCW LiDAR, and Doppler velocity measurements.
Additionally, we propose an innovative online extrinsic calibra-
tion mechanism between radar-IMU or FMCW LiDAR-IMU,
aided by Doppler velocity and loop closure [6], to ensure
consistent sensor alignment during operation, and a novel
Doppler-based scan-matching method for front-end odome-
try, significantly improving accuracy in dynamic scenarios.
Our proposed SLAM system is thoroughly evaluated on var-
ious open-source datasets alongside our dataset. The results
significantly outperform current state-of-the-art radar-SLAM
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and FMCW LiDAR-SLAM frameworks. Finally, we make our
Doppler-SLAM system open-source to foster further research
and development within the community.

II. RELATED WORK

In this section, we review state-of-the-art SLAM approaches
based on LiDAR and radar, including traditional frameworks
and recent methods that leverage Doppler information. We also
discuss techniques that integrate these sensors with IMU mea-
surements and present our proposed method in the context of
Doppler-aided SLAM for radar and FMCW LiDAR.

LiDAR-based Odometry and SLAM have significantly
evolved with the development of various registration and op-
timization techniques. One of the fundamental methods for
point cloud registration is the iterative closest point (ICP) al-
gorithm, which aligns 3D shapes by minimizing point-to-point
distance [7]. Generalized-ICP (GICP) [8] extends this by com-
bining point-to-plane and point-to-point constraints, improving
registration robustness. Building on these foundations, LOAM
introduces a two-thread approach where one thread estimates
motion in real-time while another refines the map [9]. KISS-ICP
has recently been proposed as a point-to-point scan-to-map
matching and keyframe-based LiDAR odometry technique that
leads to high accuracy while maintaining computational effi-
ciency [10]. However, LiDAR-only approaches struggle with
featureless environments and motion distortion in highly dy-
namic platforms. The integration of an IMU improves the
accuracy and robustness of LiDAR odometry by providing a
reliable scan distortion and an initial pose for ICP. In addi-
tion, the high-frequency IMU measurements help to correct for
motion distortion within LiDAR scans, which is particularly
beneficial in dynamic environments where motion blur degrades
scan quality. Tightly-coupling LiDAR and IMU data has also
been explored through direct LiDAR-inertial fusion methods.
Methods like tightly-coupled 3D LiDAR-inertial odometry [11]
and LINS [12] demonstrate improved state estimation accu-
racy through real-time optimization techniques. Graph-based
approaches such as LIO-SAM also integrate LiDAR and inertial
data for more accurate and globally consistent odometry [2]. To
enhance computational efficiency and real-time performance,
FAST-LIO [13] introduces a tightly-coupled iterated Kalman
filter framework for robust LiDAR-inertial odometry, which
is later improved with FAST-LIO2 by reducing computational
complexity while maintaining accuracy [1]. Recent improve-
ments in FMCW technology have paved the way for a novel
iteration of LiDAR, namely FMCW-LiDAR, which has the
additional capability of measuring the relative radial velocity
(Doppler velocity) of each point [14], [15]. Doppler iterative
closest point extends ICP by leveraging Doppler information
to improve robustness in high-speed scenarios [16]. FMCW-
LIO [17] and Doppler-Odom [18] incorporate Doppler LiDAR
measurements with IMU to refine motion estimation and miti-
gate drift in dynamic environments.

4D-radar-based Odometry and SLAM have gained remark-
able attention due to their robustness in adverse environmental
conditions, such as fog, rain, and low-light scenarios. Several
approaches leverage radar-inertial fusion, probabilistic estima-
tion techniques, and deep learning-based feature extraction to
enhance odometry performance. Since 4D radar is capable of es-
timating the 3D ego velocity from a single scan [19], [20], radar-
only SLAM approaches can utilize the estimation of ego velocity
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to increase the accuracy of scan-matching [21], [22], [23].
Casado Herraez et al. [24] propose a point-to-point ICP with
Doppler velocity constraint technique specifically designed to
harness the velocity information provided by radar sensors.
Their approach has recently been extended to integrate IMU
information, enabling fusion and optimization through global
and local factor graphs [25]. A scan-to-submap Normal distri-
bution transform is presented for radar point cloud registration,
while velocity pre-integration is used to improve optimization
performance [26]. Zhang et al. [3] proposes an adaptive prob-
ability distribution-GICP to address radar measurement noise,
considering the spatial probability distribution of each point in
GICP [8]. Another approach to improving the matching quality
of sparse radar data is 4DiRIOM [5]. Here, point matching
is expressed in terms of distribution-to-multiple-distribution
constraints, which is achieved by matching the current scan
with a sub-map constructed by the mapping module, rather than
scan-to-scan matching. Huang et al. [27] leverage the radar cross
section information to refine the point-to-point correspondence,
thus improving the estimation of poses based on radar point
matching. However, radar-only SLAM methods often struggle
with low spatial resolution and cluttered environments, mak-
ing robust feature extraction and scan-matching challenging.
Integrating 4D radar data with inertial measurements has been
shown to enhance odometry accuracy and robustness. Tightly-
coupled radar-inertial odometry methods, such as DGRO [28],
DRIO [29], and multi-state EKF-based radar-inertial odom-
etry [30], integrate Doppler velocity measurements and IMU
readings to provide accurate motion estimation. These methods
leverage persistent landmarks and extended Kalman filtering
to reduce drift in odometry estimation. Additionally, a tightly
coupled factor graph formulation for radar inertial odometry
[31] has been proposed to enhance global consistency through
optimization-based approaches. Despite their advantages, radar-
inertial SLAM techniques remain susceptible to sensor noise
and require accurate calibration to ensure robustness. Recent
studies in deep learning and probabilistic estimation have led
to novel radar odometry techniques. Zhou et al. [32] leverage
deep neural networks to extract robust features from radar scans
for odometry estimation. Additionally, methods such as Auto-
Place [33] and SPR [34] focus on extracting point-wise features
and generating scene descriptors to improve place recognition.
However, these methods rely on large training datasets and
may generalize poorly to unseen environments, limiting their
adaptability in dynamic conditions.

Inspired by previous works [1], [5], [16], [17], we propose our
Doppler-SLAM approach, which significantly enhances existing
methods by unifying 4D radar-inertial and FMCW LiDAR-
inertial SLAM into a single framework that directly incorpo-
rates Doppler velocity for distortion correction, scan-matching
and online calibration, enabling robust SLAM in dynamic
environments.

III. DOPPLER-SLAM

To represent the various mathematical and physical quantities
used in our research, we use the following conventions in this
paper. Scalars will be printed as lowercase, non-bold letters (e.g.,
b), and constants will be printed as uppercase, non-bold letters
(e.g., B). Matrices will be printed as bold upper case letters,
like B. Vectors will be represented by bold lowercase letters,
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Fig. 1.  Generalizability of our proposed Doppler-SLAM on the HeRCULES
dataset “Sports Complex”. Left: radar map and trajectory (blue) generated with
Doppler-SLAM. Right: FMCW LiDAR map and trajectory (green) generated
with Doppler-SLAM.

like b. Subscripts and superscripts are used to denote different
frames of reference. For example, a vector b in the radar frame
{}" will be denoted as b", and the rotation from frame {}" to
frame {}" will be represented by either the matrix B or the
quaternion b¥. The global world frame is represented by {}"V'.
To simplify the exposition, the subsequent references to radar
in this paper refer to 4D radar. Similarly, FMCW-LiDAR with
Doppler measurements is abbreviated as LiDAR .

A. Framework Overview

Fig. 2 illustrates the overall system architecture, highlighting
four key modules: (i) velocity filter, (ii) motion compensation,
(iii) state estimation, and (iv) online calibration with graph
optimization. The following subsections describe the design and
implementation of each module in detail.

B. Front-End

1) System Input and State: The primary input of our system
is provided by an IMU and a LiDAR or a radar sensor. The
measurement u from an IMU is defined as (1):

(bt :wt+bw+nw7
a, = R/"P(a; — g) + ba + na, (1)

where w; and a, are the raw IMU measurements in IMU frame
{}® at time t. @; and &, are influenced by the slowly varying
bias b and white noise n. R}V is the rotation matrix from
world frame {}" to IMU (body) frame {}Z. The term g refers
to the constant gravity vector in the world frame. Although
the measurement principles of 4D radar and FMCW-LiDAR
are somewhat different, their output data is reformulated into
a unified representation. Let ¢ denote the index of radar or
LiDAR scans and let the points m in the scan be represented as
s? = {1y, My, my, - - - }, which are sampled at the local radar
or LiDAR coordinate frame {}° at the end of the scan. Each
point rhf provides three-dimensional geometric point [z, y, 2]

11é [C:Jt ét],

and radial Doppler velocity UJS along the point’s direction. The

9 is typically affected by noise terms n®

measured point m;
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and n°, which account for geometric noise and velocity noise,
respectively. Eliminating this noise recovers the true location
and Doppler velocity of the point in the local sensor coordinate
frame.

~S S S
m; fijrnj,

05 :U3S+17]$. 2)

The system state x evolves on a 24-dimensional manifold and
comprises the body frame’s rotation Ry, position py, and vy
relative to the world frame (i.e., the initial body frame), the
gyroscope and accelerometer bias b, and b,, as well as the
radar-IMU or LiDAR-IMU extrinsic parameters R, and pgy:

x2[R) p/ R}, pl, v, b] bl g']". (3

2) Velocity Filter: We propose a velocity filter module that
fuses Doppler velocities and IMU measurements to distinguish
between dynamic and static points and effectively eliminate
outliers. Assume that the optimal state estimate after fusing the
last sensor scan is x; with the covariance matrix &;. As proposed
in FAST-LIO2 [1], forward propagation starts when an IMU
measurement is received and stops upon receiving a new sensor
scan. The continuous model is discretized at the IMU sampling
period [35] based on the operation H and the derivative of the
discrete model f defined in FAST-LIO [13]. Let At denote the
sampling period between two consecutive IMU measurements
and w represent the noise. Then, the predicted state from the
IMU is formulated as follows:

Xir1 = X; H (f (Xi; U;, wl) At)

T LT T T]T' 4)

A
Wi = [nw n, n, I,

At any given moment, the ego velocity is represented by v°.
The measured Doppler velocity v]S from each target is consid-
ered as taking the magnitude of the projection of the relative
velocity vector between the target and the sensor onto the ray
connecting the target and the sensor. This calculation involves
the dot product of the target’s velocity v* in the sensor frame
{}* and the unit vector pointing from the sensor towards the
target:

S

s m s s .S s

— _ 5,5 S,.S S
—v =r7-v> =ryu] +ryjv) +r;v0. (5)

S .y
T [lm

Considering the rigid body transformation detailed in [5],
the velocity v; obtained from IMU forward propagation is
transformed into the LiDAR or radar coordinate system {}°
by:

VS =R (RTvy + (wi — by) x ply). (6)
By substituting (6) into (5), we obtain the predicted Doppler
velocity for each point:

S _ S &S _ .S58 | SaS | S-S
07 =17 V7 =)o) + )0, + ;o). @)

Introducing a predetermined threshold Y to mitigate low-
amplitude fluctuations caused by sensor noise, the velocity filter
is defined by the condition |05 — v7| < Y. This formulation
ensures that a point Iilf is considered valid only if the discrep-
ancy between its predicted Doppler velocity @f and measured
Doppler velocity vf isbelow Y, effectively filtering out dynamic
outliers and ghost points. A key advantage of our proposed
velocity filter over traditional least-squares methods [36] is that
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Fig. 2.

Pipeline of Doppler-SLAM consists of four main modules: velocity filter (Section III-B2), motion compensation (Section III-B3), state estimation

(Section I1I-B4), and loop closure with graph optimization (Section III-C). The graph on the right illustrates the workflow of online extrinsic calibration between
the IMU and either radar or LiDAR using graph optimization. In this approach, we combine the IMU pre-integration factor, odometry factor, and ego velocity
factor to construct a factor graph. Once a loop closure factor is detected, additional optimization refines the extrinsic transformation.
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Fig. 3. Velocity Filter in a highly dynamic scenario with a moving tram. The
top panel presents the camera view, the left panel shows the radar point cloud after
processing by our proposed velocity filter, where purple indicates dynamic points
and green indicates static points, and the right panel illustrates the traditional
least-squares method, in which green points are inliers (static objects) detected
by the method and red points are outliers (dynamic objects). The least-squares
method relies on the Doppler velocities of all inliers to fit the ego velocity profile
(blue curve) but struggles in highly dynamic environments because it incorrectly
incorporates Doppler measurements from moving objects (tram). In contrast, our
IMU-based velocity filter effectively distinguishes between dynamic and static
points, yielding more accurate ego velocity estimates and robust performance
in complex, real-world scenarios.

it does not require the assumption that most targets in the envi-
ronment are stationary, which is often an unrealistic assumption,
asillustrated in Fig. 3. This benefit is especially evident in highly
dynamic outdoor environments, where least-squares approaches
often fail.

3) Motion Compensation: To mitigate motion-induced dis-
tortion, our method performs a two-stage compensation of the
LiDAR measurements. For radar, there is no motion distortion
since its data acquisition method captures point cloud and
Doppler velocities instantaneously, effectively bypassing the
temporal distortions inherent in sequential LiDAR scanning.

Geometry Compensation: For a point 1rir1;-9 sampled at times-

tamp tg in the scan s° with scan-end time ¢;, we adopt the back-
ward propagation method from FAST-LIO [13] to compensate
for the geometric motion distortion. Equation (4) is backward

propagated as X; 1 = X; B (—f(%X;, u;,0)At). The earlier IMU
measurement is used as the input for all points sampled be-
tween two consecutive IMU measurements. Subsequently, we
use the relative pose between ¢! and ¢; to transform the local
measurement Ii’lf into its corresponding scan-end measurement.
In this way, the transformed points in the scan are considered to
have all been scanned simultaneously at the scan-end time ¢;.

Doppler Compensation: The measured Doppler velocity v:
for each point is influenced by both the target’s motion and
the sensor’s motion. Dynamic targets are first filtered out by
the velocity filter. Inspired by FMCW-LIO [17], we remove the
sensor’s motion over a scan period by subtracting its projected
velocity change from the measured Doppler value. The relative
velocity between ¢! and ¢; is also calculated by the backward
propagation with IMU measurements.

4) State Estimation: To estimate the state vector given in (3),
we employ an iterated extended Kalman filter 1EKF). The IEKF
iteratively linearizes the nonlinear system around the most recent
state estimate, thereby refining the estimate and enhancing the
overall accuracy of the state estimation process. Keeping the
first-order terms from (4) and setting the noise term w to zero,
the error state 0x and the covariance P evolve according to the
following linear model:

5Xi+1 = Fézi (SXi -+ Fw,i Wi,
P11 =Fs,P,F), +F, QF),. ®)

Here, F's5;, and F,,,; denote the transition matrix and noise Jaco-
bian matrix, respectively, both linearized at X; [17]. The noise
covariance Q; is obtained from IMU calibration. Assuming that
the system state and covariance are denoted as X; and P, whena
new scan of radar or LIDAR arrives, the iteration of the system
state is described below.

Geometry Residual: We first project each measured point mf

in the new scan to the global frame rh}’V = TupThs (11139 + njs),

where 'i‘wb consisting of R, and p;, represents the body frame’s
pose relative to the world frame and Tbs = inv(’i‘sb) represents
radar-IMU or LiDAR-IMU extrinsic transform, which are all
contained in the predicted state X; from (8). The five nearest
neighbors of the transformed point """ are selected in the map
using the ikd-Tree [1]. These neighboring points are then utilized
to fit a local planar patch characterized by the normal vector u;
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Fig. 4. Geometry and Doppler Residual.

and centroid q}"". Ideally, 1} should lie exactly in the fitted
plane. This leads to the following equation:

0 =u; (T, Tos (mf +n7) —q}"). ©)

Summarizing (9) into a compact form and linearizing the mea-
surement using a first-order Taylor expansion about X; yields the
following simplified form:

0 = &h; (xi, m}»g + nf) ~ &h; (%;,0) + gH;ii + n;,
0= gré— + gH;)A(/,L + n;,

gt — yf
I =4

(T Tys (m§ +nf) —q)Y), (10)
where x; = X; Hx;, gHé- denotes the Jacobian matrix of geom-
etry measurement function #h; with respect to error state X;.
Furthermore, n; models the raw measurement noise associated
with n® and 81’ is defined as the geometry residual.

Doppler Residual: One of the key innovations of this paper is
our dual matching strategy, which leverages both the observed
3D geometry and the Doppler velocity residuals for each point,
as shown in Fig. 4. The geometric residuals ensure precise
alignment of the 3D point cloud, while the Doppler velocity
residuals provide critical information about the motion state,

enhancing overall matching accuracy. From (6) and (7), we

easily get the Doppler residual dr} for each point mJS in the
new scan:

0 =0;(07 — v7) = %h; (%;,0) + TH;X; +n;,
r, = dH;ii +n;

= 0i(r"RG(R vy + (w; — by) X pfy) —v7),

Y
where o; is the time interval between this frame and the previous
one. Then, combining the prior distribution with the likelihoods
derived from all geometric and Doppler observations, we obtain
an equivalent maximum a posteriori (MAP) estimate [37] given

by

m
. . 2
. A 112 i  ~ d.r dyyt ~
min ||xiExi||13_+§ ng;_FgH;xi—k r; + “H;X; .
X; ¢ X
Jj=1

12)

where 13’1 R, represent the covariance of error state and
the measurement noise, respectively. H is defined in FAST-
LIO [13]. Let H = [(*H’ +&H!), ..., (“H., +&H! )] ,R =
diag(Ry, ..., R;,), this MAP problem is solved using an IEKF
with Kalman gain K and partial differentiation of error state J,
as below:

K=HR'H+P)'HR
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Altos V2 Radar

IMU  OAK-D Pro Camera

Fig. 5. Experiment setup (left: sensor platform mounted on a car, right: CAD
Model of the platform).

P=J'PJ". (13)
Finally, after the IEKF converges, the optimal state X; and its
corresponding covariance P; are given by:

% =%" P,=1- (KH)P. (14)

C. Graph Optimization

Online calibration and back-end optimization incorporate
five principal components: IMU pre-integration, odometry, ego
velocity, extrinsic transform, and loop closure factors. Among
them, the IMU pre-integration, ego velocity, and extrinsic trans-
form factors are only needed when online calibration is acti-
vated. Consequently, if the extrinsic transform between IMU
and radar or LiDAR is already known, the back-end optimiza-
tion is simplified to the classical loop closure optimization.
The odometry and extrinsic transform factors are derived from
(14), while the ego velocity factor is calculated using the least
squares method combined with our proposed velocity filter. The
IMU pre-integration factor connects keyframes to assist pose
prediction and maintain graph constraints. Loop closure, based
on ScanContext [6], encodes relative poses to reduce drift, and
also constrains the extrinsic estimation globally.

IV. EXPERIMENTAL EVALUATION

A. Hardware Setup and Dataset Collection

As displayed in Fig. 5, our experimental platform consists of
a 4D Altos V2 radar sensor operating at 77 GHz, two Livox
Mid-70 LiDAR, and a Spatial Phidget IMU. Near ground truth
data was obtained using U-Blox F9 RTK-GNSS combined with
inertial navigation systems, providing centimeter-level position-
ing accuracy and enabling precise evaluation of our method.
All sensors are time-synchronized and rigidly mounted on a
roof rack on top of the test vehicle to ensure accurate spatial
alignment. We collect data in diverse scenarios, including urban,
suburban, and highway, under varying weather and lighting
conditions. LiDAR-to-IMU extrinsic calibration is performed
using the method proposed in LI_Init [38], and radar-to-IMU
extrinsic calibration is computed through the online calibration
approach introduced in this paper.

We implement Doppler-SLAM in C++ with ROS1 and GT-
SAM [39] and perform evaluations on a computer equipped with
a 4.6 GHz AMD Ryzen 5600x CPU and 32 GB of RAM. Our
evaluation metrics include absolute pose error (APE) and relative
pose error (RPE) per frame. To thoroughly evaluate the perfor-
mance of Doppler-SLAM, we conduct extensive experiments
targeting accuracy, robustness, and generalization across diverse
scenarios and sensor types, including various radar and LiDAR
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TABLE I
COMPARISON OF SLAM METHODS ON SNAIL-RADAR DATASET

20240113/3 (4.6 km) ‘ 20240113/1 (0.5 km) ‘

Method ‘

20240115/2 (6.6 km) ‘ 20240123/2 (8.5 km) ‘ 20240123/3 (2.2 km)

| RPE [m] RPE[°] APE[m] | RPE[m] RPE[] APE([m] | RPE[m] RPE[?] APE[m] | RPE[m] RPE[°] APE[m] | RPE [m] RPE[?] APE [m]
FAST-LIO2-LC (LiDAR) | 0.007 0.011 1.870 | 0.010 0.013 0359 | 0.007 0.008 1183 | 0.022 0.005 9.889 | 0.009 0.008 0.693
KISS-ICP (radar) 0.240 0.155 68.40 0.118 0.179 4389 0.232 0.134 T47.1 0.269 0.117 167.8 0.222 0.155 45.86
Radar-ICP 0.238 0.156 18.24 0.120 0.174 3.946 0.229 0.131 31.62 0.252 0.112 3747 0.221 0.151 7.893
4DRadarSLAM 0.737 1.170 5323 0.460 1.074 8.908 0.663 1.179 491.2 0.864 0.901 4545 0.503 0.983 142.1
Graph-RIO - - - 0.169 0.172 9.523 0.195 0.172 763.4 - - - 0.266 0.168 497.0
RIV-SLAM 0.213 0.142 30.17 0.113 0.171 4.131 0.219 0.128 33.1 0.224 0.101 3551 0.201 0.140 6.120
Doppler-Odometry(radar) | 0.151 0.113 3.375 0.083 0.167 0.285 0.175 0.102 9.391 0.199 0.095 10.59 0.156 0.117 2.608
Doppler-SLAM(radar) 0.150 0.111 1.532 0.082 0.160 0316 0.174 0.098 5.651 0.198 0.095 5.810 0.156 0.116 1.556

Bold: best results, underlined: best radar results.

sensors. The system is benchmarked on multiple publicly avail-
able datasets, including (i) Snail-Radar [40] using Continental
ARS548 radar; (ii)) NTU4DRadLM [41] employing the Oculii
Eagle radar; (iii) HERCULES [42] using Continental ARS548
radar paired with an Aeva FMCW LiDAR; and (iv) our newly
introduced IMADAR dataset with the Altos V2 radar.

B. Comparison to State-of-The-Art Methods

In the first experiment, we analyze the performance of our
system and compare it to state-of-the-art methods. The results
show that our proposed Doppler-SLAM achieves superior radar-
SLAM performance compared to existing methods using the
Snail-Radar dataset [40]. Next, we showcase the cross-modality
generalization by comparing Doppler-SLAM with state-of-the-
art radar- and LiDAR-SLAM approaches on the HeRCULES
dataset [42], using both FMCW LiDAR and 4D radar data.
All Snail-Radar and HeRCULES trajectories are evaluated in
the plane, with some results adapted from [25]. We further
validate Doppler-SLAM’s versatility on NTU4DRadLM [41]
and our IMADAR dataset, which include both vehicle-mounted
and handheld scenarios. For NTU4DRadlLM and IMADAR, 3D
pose accuracy is assessed by evaluating the vertical direction as
well, confirming Doppler-SLAM’s robustness and effectiveness
in diverse and dynamic environments.

We benchmark Doppler-SLAM against several state-of-the-
art methods, including 4DRadarSLAM (Radar-only SLAM) [3],
Graph-RIO (Radar-inertial odometry) [43], Radar-ICP (Doppler
velocity aided Radar-only odometry) [24], Go-RIO (Doppler
velocity aided Radar-inertial odometry) [21], KISS-ICP (LiDAR
odometry approach on radar) [10], FAST-LIO2 (LiDAR-inertial
odometry) [1], and RIV-SLAM (Radar-inertial SLAM) [44].

Quantitative results on the Snail-Radar dataset are presented
in Table I. FAST-LIO2 with loop closure (FAST-LIO2-LC) on
LiDAR data serves as the baseline, while all other methods
operate on radar data. KISS-ICP provides good local accu-
racy on radar point clouds but suffers from increased drifts
in large dynamic scenes. Both Radar-ICP and 4DRadarSLAM
are radar-only, point-to-point matching methods that, without
motion constraints, are prone to incorrect matches in large-
scale or highly dynamic sequences such as 20240115/2 and
20240123/2. Radar-IMU-based methods, such as Graph-RIO
and RIV-SLAM, despite using IMU as motion constraints, also
exhibit significant errors due to their failure to detect loop
closure in dynamic environments. Doppler-Odometry (without
loop closure) outperforms all other radar-based methods by uti-
lizing Doppler velocities to improve motion estimation. Notably,
Doppler-SLAM further enhances performance by incorporating
loop closure, achieving accuracy on radar data that is comparable
to LIDAR-based SLAM.

FAST-LIO2-Multi (LIDAR)

Groundtruth Doppler-SLAM (radar) FAST-LIO2 (LIDAR)

Fig. 6. Qualitative results on sequence “WoehrSee” from IMADAR dataset.

Table II presents the evaluation of Doppler-SLAM’s perfor-
mance and generalizability on the HeRCULES dataset, exam-
ining both radar and FMCW LiDAR data, as shown in Fig. 1.
To highlight the improvements of Doppler-SLAM over tradi-
tional LIDAR-SLAM methods on FMCW LiDAR, we provide
a comparative analysis with FAST-LIO2 [1]. Thanks to the
robustness of the velocity filter in dynamic scenarios and the
tight coupling between IMU measurements and Doppler veloc-
ities, Doppler-SLAM consistently outperforms FAST-LIO2 in
the sequences “Street Day”, characterized by highly dynamic
conditions and rain, “Library Day”, and “Parking Lot”, no-
table for frequent sharp turns. These results demonstrate that
Doppler-SLAM maintains remarkable robustness in harsh con-
ditions where competing methods suffer significant performance
degradation. These capabilities are further highlighted on the
NTU4DRadarlLM dataset, as shown in Table III, which employs
the Oculii Eagle radar with both handheld and vehicle-mounted
data acquisition.

However, the datasets mentioned above are mostly low-speed
(below 50 km/h) driving scenarios. To more comprehensively
evaluate the performance of Doppler-SLAM in high-speed,
long-distance scenarios, we conduct additional experiments us-
ing our own IMADAR dataset, benchmarked against FAST-
LIO2 (FAST-LIO2-Multi for two LiDARs with asynchronous
update) with loop closure for comparative analysis. Table IV
presents the evaluation of three different sequences: ”WoehrSee”
and "HBF”, both representing urban traffic scenarios where the
main challenges are complex dynamic conditions (as shown
in Fig. 3 and Fig. 6) and degraded environments such as
tunnels, and the "N4” sequence, representing high-speed and
long-distance conditions with vehicle speeds up to 110 km/h.
Benefiting from a higher frequency of asynchronous updates
and a larger field-of-view angle, FAST-LIO-Multi performs best
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TABLE II
COMPARISON OF SLAM METHODS ON HERCULES DATASET

Method | Mountain Day 1 (4 km, mountain) | Library Day 1 (1.6 km) | Sports Complex Day 1 (1.4 km) | Parking Lot 3 Night (0.5 km) |  Street Day 1 (1 km, rain)

‘ RPE [m] RPE [°] APE [m] ‘ RPE [m] RPE [°] APE [m] ‘ RPE [m] RPE [°] APE [m] ‘ RPE [m] RPE [°] APE [m] ‘ RPE [m] RPE [°] APE [m]
FAST-LIO2-LC (LiDAR) 0.085 0.061 4.595 0.095 0.072 5234 0.084 0.073 2.114 0.091 0.092 1.828 0.028 0.026 2.966
RIV-SLAM (radar) 0.077 0.084 206.9 0.014 0.064 4.175 - - - 0.020 0.075 2.380 0.010 0.042 10.74
Radar-ICP (radar) 0.055 0.067 118.6 0.049 0.064 10.23 0.049 0.071 7.125 0.058 0.089 3.414 0.022 0.028 11.66
Doppler-SLAM (radar) 0.059 0.068 43.05 0.012 0.094 13.24 0.081 0.065 2.718 0.015 0.078 0.717 0.013 0.039 7.448
Doppler-SLAM (LiDAR) 0.128 0.054 4.498 0.085 0.061 3.365 0.093 0.067 2.069 0.101 0.077 1.642 0.029 0.024 2.813

Bold: best LiDAR results, underlined: best radar results.

TABLE III TABLE V
COMPARISON OF SLAM METHODS ACROSS SEQUENCES ON ABLATION EVALUATION ON RADAR AND FMCW LIDAR SEQUENCES
NTU4DRADARLM DATASET
Method ‘ 20240113/3 (radar) ‘ Street Day (FMCW LiDAR)
Method | cp (handcart, 0.25 km) | loop2 (car, 4.79 km) | loop3 (car, 4.23 km) ‘ RPE [m] RPE[?] APE [m] ‘ RPE [m] RPE [7] APE [m]
‘ RPE [m] RPE [?] APE [m] ‘ RPE [m] RPE [°] APE [m] ‘ RPE [m] RPE [°]  APE [m]
4DRadarSLAM | 0129 0255 0861 | 1337 0308 4367 | 1216 0.455 3347 w/o velocity filter | 0216 0.3730 1607 | 0.112 0.102 11.06
Go-RIO | 0079 0.661 1035 | N - | 0991 1.035 52.74 w/o Doppler residual ‘ 0.149 0.1111 5.671 ‘ 0.071 0.080 3.350
Doppler-Odometry | 0022 0.109 3267 | 0260 0079 5056 | 0209  0.162 4834 - —
w/o online calibration ‘ 0.159 0.1112 4.140 ‘ 0.052 0.038 3.476
Doppler-SLAM ‘ 0.079 0.267 1.508 ‘ 0.261 0.126 4.278 ‘ 0.188 0.169 8.182 —
Bold: best results, underlined: best second best results. w/o loop closure ‘ 0.151 0.113 3.378 ‘ 0.046 0.039 2.940
Doppler-SLAM \ 0.150 0.1110 1.532 \ 0.029 0.024 2.813
TABLE 1V Bold: best results, underlined: best second best results.
COMPARISON OF SLAM METHODS ACROSS SEQUENCES ON IMADAR
DATASET
TABLE VI
Method | WoehrSee (7.1 km) |  HBF (47km) | N4 (154 km) COMPUTATION TIME OF EACH MODULE (MS)
| RPE [m]  APE [m] | RPE [m] APE [m] | RPE [m] APE [m]
FAST-LIO2 (LiDAR) | 022 2489 | 029 1556 | 0252 138.77 | velocity filter | Doppler residual | online calibration | loop closure
FAST-LIO2-Multi (LiDAR) ‘ 0.115 18.65 ‘ 0.104 2.50 ‘ 0.153 58.75 20240113/3 (radar) ‘ 0.024 ‘ 1.877 ‘ 0.036 ‘ 37.72
Doppler-SLAM (radar) | 0.178 3055 | 021 846 | 0216 102.9 Street Day (FMCW LiDAR) | 0.175 | 10.8 \ 0.097 | 137

Bold: best results, underlined: best second best results.

the integration of Doppler velocity into both radar and FMCW
LiDAR systems greatly improves accuracy and robustness by
reducing false matches in dynamic scenes. The computation
time for each module is summarized in Table VI. The velocity
filter and online calibration modules are highly efficient, each
contributing less than 0.2 ms per frame. Doppler residual com-
putation is also lightweight, with slightly higher cost on LIDAR
due to increased point cloud density. As expected, loop closure
is the most computationally intensive component, but it remains
within real-time capability for both sensor types. This confirms
the efficiency and suitability of Doppler-SLAM for real-time
radar and FMCW LiDAR applications.

Groundtruth Doppler-SLAM (radar) FAST-LIO2 (LIDAR) ~ FAST-LIO2-Multi (LIDAR)

Fig. 7. Qualitative results on sequence “HBF” from IMADAR dataset.

on all three sequences. The quantitative results indicate that al-
though both Doppler-SLAM and FAST-LIO2 show performance
degradation over the three sequences, Doppler-SLAM using
radar is still comparable to state-of-the-art LIDAR approaches
and even outperforms FAST-LIO with LiDAR in highly dynamic This paper proposes Doppler-SLAM, a novel Doppler-aided
environments on sequences “HBF” (as illustrated in Fig. 7) radar-inertial and LiDAR-inertial SLAM framework. By incor-
and “N4”. These results further validate our proposed online porating Doppler velocities into scan-matching, our approach
extrinsic calibration method, as it is consistently employed for  unifies FMCW LiDAR- and 4D radar-based SLAM systems into

V. CONCLUSION

radar-to-IMU calibration across all three sequences. a single framework, enabling robust SLAM performance under
challenging dynamic conditions. This tightly integrated system
C. Ablation Studies fuses IMU data with either 4D radar or FMCW LiDAR to deliver

) ) o odometry, ego velocity estimation, mapping, and extrinsic cal-
We perform ablation studies to evaluate the contributions and  jbration between the IMU and the radar or LiDAR sensor. Our

computation time of individual components within the Doppler-  innovative online calibration technique, enhanced by Doppler
SLAM framework. To isolate and eliminate sensor-related ef-  velocity and loop closure, ensures consistent sensor alignment.

feCtS, we Select Sequence 202401 13/3 from the Snail-Radar for Thorough evaluations demonstrate Clear advantages over ex-
the radar-based Doppler-SLAM and the sequence “Street Day”  jsting state-of-the-art radar-SLAM and FMCW LiDAR-SLAM
from HeRCULES for FMCW LiDAR-based ablation study.  frameworks, and by releasing Doppler-SLAM and our IMADAR
Both sequences represent dynamic and complex environments.  dataset as open-source software, we encourage continued ad-
As presented in Table V, the results clearly demonstrate that  vancement and further research within the SLAM community.
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