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Abstract—Reliable odometry in highly dynamic environments
remains challenging when it relies on ICP-based registration:
ICP assumes near-static scenes and degrades in repetitive or
low-texture geometry. We introduce Dynamic-ICP, a Doppler-
aware registration framework. The method (i) estimates ego
motion from per-point Doppler velocity via robust regres-
sion and builds a velocity filter, (ii) clusters dynamic objects
and reconstructs object-wise translational velocities from ego-
compensated radial measurements, (iii) predicts dynamic points
with a constant-velocity model, and (iv) aligns scans using a
compact objective that combines point-to-plane geometry resid-
ual with a translation-invariant, rotation-only Doppler residual.
The approach requires no external sensors or sensor–vehicle
calibration and operates directly on FMCW LiDAR range
and Doppler velocities. We evaluate Dynamic-ICP on three
datasets—HeRCULES, HeLiPR, AevaScenes—focusing on highly
dynamic scenes. Dynamic-ICP consistently improves rotational
stability and translation accuracy over the state-of-the-art meth-
ods. Our approach is also simple to integrate into existing
pipelines, runs in real time, and provides a lightweight solution
for robust registration in dynamic environments. To encourage
further research, the code is available at: https://github.com/
JMUWRobotics/Dynamic-ICP.

I. INTRODUCTION

Reliable odometry in unknown environments is a funda-
mental requirement for robust autonomy in ground, aerial,
and mobile robots. Decades of research have yielded numer-
ous point cloud registration methods for odometry pipelines,
among which the Iterative Closest Point (ICP) [2] [6] has
been widely adopted due to its precision and efficiency. ICP
aligns a source to a target cloud by alternating correspondence
search with transform refinement to minimize the geometric
error. While ICP variants can be highly accurate in quasistatic
scenes, they implicitly assume that most points are stationary
between successive frames, an assumption violated in highly
dynamic settings. As a result, moving objects induce spurious
correspondences and bias, and performance further degrades
in geometrically repetitive, low-texture environments (e.g.,
tunnels, bridges) where ambiguous matches can lead to drift.

In recent years, frequency-modulated continuous-wave
(FMCW) LiDAR technology has advanced beyond traditional
LiDAR systems by providing range and per-point Doppler
velocity. These sensors measure direct motion cues in dynamic
scenes by comparing phase shifts across the transmitted chirp
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with Julius-Maximilians-Universität Würzburg, Germany. Andreas Nüchter
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Fig. 1: Workflow of Dynamic-ICP for dynamic objects. Left: FMCW
LiDAR scan in highway scenarios. Dynamic points are colored and
clustered. Right: Velocity reconstruction, prediction, and matching of
dynamic objects. The raw dynamic points are colored red, while the
predicted points are colored green. Black arrows and boxes represent
the object’s velocity and bounding box, respectively.

sequence. However, the use of Doppler for understanding
dynamic scenes is still in early stages.

To address these limitations, we propose Dynamic-ICP, a
Doppler-aware variant of ICP that explicitly models scene dy-
namics and fast ego motion. Rather than assuming stationarity,
Dynamic-ICP predicts where points will be in the next frame
before establishing correspondences. Concretely, we exploit
per-point Doppler velocity measurements (e.g., from FMCW
sensors) to cluster moving objects, reconstruct each object’s
full 3D velocity, and warp points into their next-frame states,
as shown in Fig. 1. A distance-adaptive dynamic correlation
then guides correspondence weighting, suppressing spurious
matches from dynamic objects while preserving informative
structure. Compared to approaches that simply reject dynamic
points or rely solely on robust loss functions [1] [24] [36],
Dynamic-ICP prioritizes Doppler-consistent pairs and per-
forms correspondence search in a motion-compensated do-
main. The added rotation-only Doppler residual eliminates
classic ICP degeneracies and reduces drift in repetitive or
low-texture regions. In highly dynamic scenes, per-cluster
velocity prediction aligns moving objects across frames. It also
stabilizes orientation under strong ego and object motion. All
of this is done while retaining the simplicity and real-time
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efficiency that makes ICP practical.
We evaluate Dynamic-ICP across diverse, highly dynamic

scenarios with substantial object motion. Experiments demon-
strate consistent gains in rotation/translation accuracy, faster
convergence, and improved robustness under severe dynam-
ics. We also report detailed ablations to quantify the ef-
fect of Doppler-based clustering, velocity reconstruction, and
distance-adaptive correlation on overall performance. Code
will be released to facilitate reproduction and extension. To
summarize, our contributions are:

• We present Dynamic-ICP, a Doppler-aware dynamic ICP
designed for highly dynamic scenes where standard ICP
degrades.

• We leverage per-point Doppler velocity to cluster moving
objects and reconstruct each object’s full 3D velocity.
A distance-adaptive motion correlation then extrapolates
object states to the next frame to guide correspondences.

• Our Doppler-consistent matching substantially alleviates
the rotation-estimation failure modes of vanilla ICP, im-
proving stability and accuracy under strong ego- and
object motion.

• Extensive experiments across diverse datasets show state-
of-the-art performance in highly dynamic scenarios.

• Finally, we open-source the implementation of Dynamic-
ICP to foster further research and development within the
community.

II. RELATED WORK
In this section, we review state-of-the-art ICP approaches,

including traditional frameworks and recent methods that
leverage Doppler information. We also discuss techniques that
integrate ICP with scene flow estimation and present our
method in the context of Doppler-aware ICP for dynamic
scenes.

A. Iterative Closest Point and Variants
Iterative Closest Point (ICP) is the canonical method for

rigid point cloud alignment, originating from early formu-
lations that alternated between closest-point association and
least-squares pose estimation [2] [6]. Efficiency and robust-
ness have been improved through careful choices of metrics,
sampling, and weighting [26] [27], probabilistic modeling as
in Generalized-ICP [28], and outlier handling via trimmed
objectives [7]. Distribution-based registration such as the nor-
mal distributions transform, replaces discrete matches with
continuous densities to enhance convergence in sparse or
noisy settings [3] [23]. To extend ICP to large baselines,
global or certifiable methods provide strong initializations
and outlier guarantees [34] [37]. Recent variants target real-
time and degenerate scenes: Voxelized GICP accelerates and
stabilizes GICP with voxel-wise covariance aggregation [19],
and KISS-ICP [30] shows that a carefully engineered point-
to-point pipeline with simple motion compensation and robust
thresholds can be both accurate and broadly applicable across
sensors. Despite these advances, most ICP-style pipelines
implicitly assume near-static scenes over short horizons, which
limits performance under strong ego motion and highly dy-
namic environments.

B. Doppler Velocity based Matching

FMCW LiDAR sensors provide per-point radial velocity
via Doppler shift, offering direct motion cues that can disam-
biguate correspondences under strong ego and object motion.
Previous work has exploited Doppler velocity for instanta-
neous estimation of ego-motion, using the radial velocity
constraint to separate static structures from moving objects
and to infer velocity vectors [13] [31]. Incorporating Doppler
velocity into registration has been explored by constraining
or guiding correspondences based on velocity consistency.
This approach is sometimes referred to as Doppler-constrained
ICP or motion-compensated matching [5] [10] [11] [33].
In the SLAM framework, the Doppler velocity sensor is
integrated with inertial and other exteroceptive sensors to
stabilize odometry, reduce drift, and improve data associa-
tion in challenging conditions, such as rain, low texture, or
repeated geometry [35]. However, most existing methods rely
on predominantly static environments and treat moving points
as outliers. In contrast, our Doppler-aware matching method
reconstructs 3D velocities for each object from the Doppler
effect and predicts their positions in the next frame. This
method yields more reliable correspondences and stronger
rotational constraints in highly dynamic scenes.

C. Scene Flow

Scene flow estimates a dense 3D motion field between
consecutive observations, generalizing optical flow to three di-
mensions [29]. Classical formulations solved for per-point 3D
motion under smoothness constraints, while modern learning-
based methods infer flow directly from point clouds using cost
volumes, permutation-invariant layers, and optimal transport
objectives [9] [18] [22]. Recent directions relevant to dynamic
registration include radar-based cross-modal supervision for
4D radar scene flow [8], ICP-Flow [21], which uses rigid-
motion priors and classical ICP to produce consistent object-
wise flow without training, and 4D voxel networks that fuse
multiple frames for efficient spatio-temporal reasoning [17].
Complementary to these, cross-modal Doppler guidance has
been proposed to transfer radar-derived 3D velocities to Li-
DAR for self-supervised scene flow [15]. However, dense flow
estimation can be computationally demanding and may rely
on learned priors that do not transfer across sensors or en-
vironments. In contrast, Dynamic-ICP provides a lightweight,
training-free alternative to dense scene flow that retains real-
time efficiency in highly dynamic scenes.

Inspired by previous works Doppler-ICP [11],
DoGFlow [15], Flow4d [17], ICP-Flow [21] and Doppler-
SLAM [31], we propose Dynamic-ICP, a Doppler-aware
registration framework that integrates per-point Doppler
velocity into correspondence search. Rather than masking
dynamic content or relying on dense scene flow estimation,
Dynamic-ICP reconstructs object-wise 3D velocities from
Doppler velocity, predicts next-frame positions with a
distance-adaptive correlation model, and performs ICP in this
motion-compensated space. This design yields more reliable
correspondences and improved rotation and translation
estimates in high-speed, highly dynamic scenes while



preserving the simplicity and efficiency of ICP. Another
advantage of our method is that it operates without requiring
extrinsic sensor-vehicle calibration compared to Doppler-
ICP [11]. In summary, Dynamic-ICP combines Doppler-aware
matching and ICP-style optimization to provide lightweight,
robust registration for classic ICP’s failure modes in dynamic
scenes.

III. DYNAMIC-ICP
To represent the various mathematical and physical quan-

tities used in our research, we use the following conventions
in this paper. Scalars will be printed as lowercase, non-bold
letters (e.g., b), and constants will be printed as uppercase,
non-bold letters (e.g., B). Matrices will be printed as bold
upper case letters, like B. Vectors will be represented by bold
lowercase letters, like b. Subscripts and superscripts are used
to denote different frames of reference. For example, a vector b
in the LiDAR frame will be denoted as bl, and the rotation
from world frame to LiDAR frame will be represented by
either the matrix Bw

l or the quaternion bwr .

A. Problem Statement

We denote the sensor frame for the previous point cloud as
the source frame, FS , and the current point cloud as the target
frame, FT . Let

Pt = {(pt
i, u

t
i, s

t
i)}

Nt
i=1, (1)

be the point set acquired at time t, where pt
i ∈ R3 is the

position of the point in the sensor frame, ut
i ∈ S2 is the unit

line-of-sight (LOS) vector from the sensor to pt
i, and sti ∈ R is

the measured Doppler velocity along ut
i (positive away from

the sensor). Likewise Pt+1 is available at time t+1. Our goals
are to:

1) estimate the transformation T t→t+1 ∈ SE(3) that aligns
Pt to Pt+1;

2) achieve registration that remains reliable under strong
ego- and object motion.

We write T = [R | t] with R ∈ SO(3) and t ∈ R3. A body
twist is ξ = [ω⊤ v⊤]⊤ ∈ R6.

B. System Overview

Fig. 2 illustrates the overall system architecture, highlighting
four key modules: (i) Ego-Motion Estimation, which estimates
the ego velocity from Doppler velocity, (ii) Dynamic Points
Clustering, which clusters the dynamic points into individ-
ual objects, (iii) Dynamic Points Prediction, predicting the
dynamic points in next frame, and (iv) Doppler-aware ICP
Matching. The following subsections describe the design and
implementation of each module in detail.

C. Ego-Motion Estimation

To estimate the ego-motion of the sensor, we first leverage
the static points. For static scene points, the measured Doppler
velocity equals the velocity induced by the ego-motion at the
point projected onto the LOS:

sti ≈ − (ut
i)

⊤(v + ω × pt
i

)
+ εi, (2)

where v,ω are the instantaneous linear and angular velocities
of the sensor at time t, and εi models noise. We estimate (v,ω)
by robust regression over all points in the scan:

min
v,ω

∑
i

ρ
(
sti + (ut

i)
⊤(v + ω × pt

i

))
, (3)

with ρ(·) being a robust penalty (e.g., Huber). Eq. (3) is solved
as a linear least squares in the six unknowns [32].

Unlike previous ego motion estimators that employ global
static assumptions [14] [20], we suppose that a majority of
points are static only at initialization. If t = 0, we set a neutral
prior

v0 = 0, ω0 = 0.

For subsequent frames (t > 0), we warm-start from ego-
velocity obtained from the previous registration result T̂ t−1→t.
This policy removes the need for a persistent “mostly static”
assumption beyond the first frame and accelerates convergence
of Eq. (3). With the solution (v̂, ω̂), the velocity filter is
defined as

rti = sti + (ut
i)

⊤(v̂ + ω̂ × pt
i

)
. (4)

A point is flagged dynamic if |rti | > τ(di), where di = ∥pt
i∥

and τ(d) = τ0 + κd is a distance-adaptive threshold. The
remaining points form the static set St.

D. Dynamic Point Clustering
After computing the ego-velocity from static points, we use

the dynamic points to cluster dynamic objects. Let Dt = Pt \
St be the set of dynamic candidates identified by the velocity
filter. We employ spatial and velocity consistency analysis to
cluster dynamic points.

Spatial consistency: We adopt HDBSCAN [4], a hierarchi-
cal density-based clustering method robust to uneven point
density and partial occlusion. We apply HDBSCAN to Dt

with minimum cluster size mcs (smallest object) and minimum
samples ms (controls density conservativeness and outlier
robustness), producing clusters {Ct

k} and an explicit noise
set Nt.

Velocity consistency: For each cluster Ct
k, we assume that

all points within the cluster belong to a rigidly moving
object, as illustrated in Fig. 3. We first form the ego-
motion–compensated Doppler velocity s̃ti for each dynamic
point s̃ti,

s̃ti ≜ sti + (ut
i)

⊤(v̂ + ω̂ × pt
i

)
, (5)

and recover the cluster velocity v̂t
k by ordinary least squares:

εi = (ut
i)

⊤v̂t
k − s̃ti, i ∈ Ct

k, (6)

where εi denotes the per-point velocity residuals and is then
filtered by a velocity-adaptive threshold τv = λ · v̂. We keep
only points satisfying

|εi| ≤ τv, (7)

removing the rest to Nt. If the inlier fraction falls below a
threshold ϕmin, the entire cluster is discarded.

After evaluating the spatial and velocity consistency of
the clusters, the remaining points form refined clusters {C̃t

k}.
These clusters, along with their estimated velocities {v̂t

k}, are
used in subsequent prediction and matching stages.
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Fig. 2: Pipeline of Dynamic-ICP consists of four main modules: (i) Ego-Motion Estimation (Sec. III-C); (ii) Dynamic Points Clustering
(Velocity Filter, Clustering and Velocity Reconstruction) (Sec. III-D); (iii) Dynamic Points Prediction (Sec. III-E); and (iv) Doppler-aware
ICP Matching (Sec. III-F). The figure illustrates the workflow on point cloud data: starting from a raw scan, ego velocity (arrows) is estimated
from per-point Doppler velocity. The velocity filter distinguishes dynamic points (red) from the static background (gray) and clusters the
dynamic set into individual objects (colored). For each cluster, the object velocity is reconstructed from its points’ Doppler velocities, yielding
a velocity vector and a bounding box (black arrow and box). These velocities are then used to predict object states to the next frame. Finally,
the scan (green) at time t (predicted dynamic points, together with the static points) are aligned to the scan (red) at time t + ∆t via
Doppler-aware ICP.

Fig. 3: Velocity reconstruction of dynamic objects. Left: FMCW
LiDAR scan with dynamic points highlighted in red and synchronized
camera view. Right: Top-down view of LiDAR scan. Dynamic
points on the moving rigid body (car) satisfy the Doppler velocity
consistency condition. This means that the velocity component of the
object (black arrow) in the direction of the line-of-sight (blue dashed
line) equals the compensated Doppler velocity (purple arrow) at that
point.

E. Dynamic Points Prediction

We predict only points belonging to dynamic clusters using
a constant-velocity motion model. For each point i in the re-
fined dynamic clusters {C̃t

k} with translational velocities {v̂t
k},

p̃ t+1
i = pt

i + v̂t
k∆t , (8)

which assumes cluster-wise constant translational velocity
over ∆t. The constant-velocity model sets the cluster’s angular
rate to zero during prediction. If an object rotates with angular
velocity ωk, the unmodeled per-point displacement (relative to
the cluster centroid ctk) is

δprot
i ≈

(
ωk × (pt

i − ctk)
)
∆t. (9)

Because Doppler provides only radial velocity, ωk is not
directly observable. We therefore (i) keep ∆t short, so ∥δprot

i ∥
remains small and unbiased at the centroid, (ii) use a slightly
enlarged, distance-aware correspondence threshold for larger
objects, and (iii) rely on the ICP point-to-plane term to absorb
the residual rotational misalignment during pose refinement.
In practice, this preserves accurate centroid prediction while
bounding per-point errors by object size and rotation rate.
Points not in dynamic clusters are considered stationary during
the sampling interval and thus are not predicted and remain
at pt

i. The source set passed to matching is thus

P̃t =
{
pt
i

∣∣ i ∈ St

}
∪

⋃
k

{
p̃ t
j

∣∣ j ∈ C̃t
k

}
, (10)

providing next-frame predictions for moving objects while
leaving static structure unchanged for the subsequent Doppler-
aware ICP alignment.

F. Doppler-aware ICP Matching
Given the predicted source set P̃t = {(pi,ui, si)}Nt

i=1 and
the target set P̃t+1 = {(qj ,nj ,uj , sj)}Nt+1

j=1 , we estimate the
rigid motion T = [R | t] ∈ SE(3) with a two-term objec-
tive that combines geometry residual and Doppler residual.
Here, nj ∈ R3 is the unit surface normal at qj with it’s
neighbors, obtained by local plane fitting and normalized so
that ∥nj∥ = 1.

Geometry residual: the point-to-plane term penalizes dis-
placement along the target normal, encouraging the trans-
formed source points to lie on the target surface and yielding
fast, stable convergence in rigid registration [27]:

rg,ij = n⊤
j

(
Rp̃i + t− qj

)
. (11)
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Fig. 4: Doppler residual of Doppler-aware ICP matching. Red points
and arrows denote the source frame, and blue points and arrows
denote the target frame. Arrows show line-of-sight directions whose
lengths are proportional to Doppler (radial) velocity. From left to
right, the diagram illustrates the matching process: source Doppler
rays are rotated to align with target rays, after which correspon-
dences are established by combining point-to-plane geometry with
the Doppler residual.

Doppler residual: the Doppler term enforces agreement be-
tween the rotated source Doppler velocity and the target
Doppler velocity along the line-of-sight, as illustrated in Fig. 4.
It provides a complementary, rotation-focused cue that is
independent of translation:

rv,ij = u⊤
j R

(
si ui

)
− sj . (12)

We minimize a robust iteratively reweighted least squares
objective

[R | t] = min
∑
(i,j)

[
(1−λv)ρg

(
r2g,ij

)
+ λv ρv

(
r2v,ij

) ]
, (13)

where ρg, ρv are robust kernels (e.g., Huber) and 0 ≤ λv ≤ 1
balances the two terms. Since rv,ij depends only on R (its
derivative with respect to t is zero), it supplies a translation-
invariant rotational constraint that (i) remains informative in
repetitive or low-texture geometry (e.g., tunnels, bridges), (ii)
is insensitive to depth ambiguity along the viewing ray (Fig. 4),
and (iii) directly penalizes rotation errors when point-to-plane
becomes weak or is affected by residual dynamics.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We implement Dynamic-ICP by extending the point-to-
plane ICP pipeline from Open3D [38] (KD-tree search, point-
to-plane Jacobians) with an additional Doppler residual and
its Jacobian. LOS directions u are stored separately from
surface normals n to keep the geometric term strictly point-
to-plane, while the Doppler term uses only LOS information.
To limit the effect of outlier correspondences, we use Tukey
loss on both terms, with tuning constants ρg = 0.5 for the
point-to-plane geometry residual (meters) and ρv = 0.3 for
the Doppler residual. We fix the balance to λv = 0.2 across
all experiments (chosen empirically). Dynamic clustering uses
HDBSCAN with mcs = 30 and ms = 10, which control
the smallest admissible object and density conservativeness,
respectively. We do not use any additional sensors (IMU,
GNSS, or wheel odometry). The initial pose is derived solely
from the FMCW LiDAR: range for geometry and per-point
Doppler for the rotational cue, consistent with our ego-motion
and clustering modules.

B. Experimental Evaluation

We evaluate on three Doppler-capable datasets, focusing on
highly dynamic segments:

• HeLiPR [12]: driving sequences with per-point Doppler
velocity from an FMCW LiDAR.

• HeRCULES [16]: diverse routes with fast ego motion and
moving traffic, recorded by an FMCW LiDAR.

• AevaScenes [25]: highway and city scenes with two
FMCW LiDARs.

C. Comparison to State-of-the-Art Methods

We benchmark against five state-of-the-art baselines under
identical pre-processing (voxel grid, target normals) and cor-
respondence radius. The baselines are: point-to-point ICP [2],
which minimizes Euclidean distances between corresponding
points; point-to-plane ICP [27], which projects errors onto
target surface normals; Generalized-ICP [28], a probabilis-
tic point-to-plane formulation with local covariances; KISS-
ICP [30], a lightweight point-to-point ICP with adaptive
correspondence thresholds; and Doppler-ICP [11], which in-
tegrates Doppler velocity into point-to-plane ICP and requires
sensor–vehicle extrinsic calibration. In contrast, our method
does not require calibration between the sensor and the vehicle
and is the only approach that performs cluster-wise dynamic
prediction. Since we focus on registration accuracy, we report
relative pose error (RPE) at the frame gap, decomposed into
rotation (RRE) and translation (RTE). Qualitative trajectories
for the best-performing methods are shown in Fig. 5.

In the first experiment, we analyze the performance of our
system and compare it to ICP-based methods on six HeR-
CULES sequences (Table I). Dynamic-ICP delivers the best
or tied-best performance across all scenes in both translation
(RTE) and rotation (RRE) errors. It clearly improves rotation
accuracy on challenging, repetitive geometry such as Bridge 01
and River Island 01, while also reducing translation error (e.g.,
Library 01). On Stream 01, our method attains the lowest
RTE and ties DICP for the best RRE. The only case without
the top rotational score is Parking Lot 02, where DICP and
point-to-point outperform the other methods. The reason is that
this is the only low ego-motion, near-static scenario, so our
method degenerates into point-to-plane approach. This further
demonstrates the advantage of our method in highly dynamic
scenarios. Overall, Doppler-aware prediction and matching
yield consistent orientation gains and competitive translation
across diverse scenes.

On HeLiPR dataset (Table II), Dynamic-ICP achieves the
best translation accuracy on five of six sequences and ties
the remaining one, while consistently ranking first or second
in rotation across all cases. It is particularly effective on
scenes with weak geometric features or evolving appearance:
Bridge 02 contains many moving vehicles with slow ego
motion, Kaist 05 includes numerous pedestrians and long-term
appearance changes, and Riverside 05 features many dynamic
objects with long-term differences. Across these settings, mo-
tion prediction and Doppler-aware matching preserve reliable
correspondences and stabilize orientation when static structure
is limited or changing.



Method Bridge 01 Library 01 Parking Lot 02 River Island 01 Stream 01 Street 01

RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦]

ICP (point-to point) 1.636 0.562 0.641 0.601 0.090 0.280 1.098 0.600 1.033 0.619 0.126 0.150
ICP (point-to-plane) 1.586 0.361 0.516 0.523 0.051 0.282 0.899 0.454 0.919 0.471 0.089 0.160
GICP 1.639 0.741 0.849 0.994 0.220 0.510 1.151 0.627 1.112 0.733 0.208 0.293
KISS-ICP 1.637 0.716 0.696 1.214 0.293 0.539 1.327 0.685 1.150 0.833 0.260 0.294
Doppler-ICP 1.024 0.689 0.178 0.511 0.069 0.281 0.380 0.334 0.465 0.216 0.071 0.150

Dynamic-ICP 1.023 0.248 0.177 0.285 0.051 0.282 0.379 0.189 0.464 0.216 0.050 0.140

TABLE I: Comparison of ICP based methods on the HeRCULES dataset. Bold: best results, underlined: second best results.

Parking Lot 02 Street 01 DCC 06 Kaist 05

GT Dynamic-ICP KISS-ICP Doppler-ICPpoint_to_planepoint_to_point

Fig. 5: Qualitative comparison. For clarity, we plot only the two best-performing methods per sequence, including our Dynamic-ICP.

Method Bridge 02 DCC 06 Kaist 05 Riverside 05 Roundabout 01 Town 01

RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦]

ICP (point-to point) 0.671 0.252 0.381 0.302 0.324 0.278 0.923 0.366 0.386 0.249 0.370 0.167
ICP (point-to-plane) 0.534 0.195 0.063 0.085 0.037 0.102 0.636 0.232 0.105 0.101 0.195 0.105
GICP 0.562 0.180 0.468 0.366 0.445 0.406 0.926 0.372 0.428 0.281 0.424 0.243
KISS-ICP 0.558 0.100 0.237 0.204 0.215 0.266 1.143 0.682 0.222 0.095 0.155 0.335
Doppler-ICP 0.748 0.373 0.519 0.361 0.585 0.568 0.959 0.502 0.479 0.391 0.498 0.416

Dynamic-ICP 0.370 0.110 0.062 0.085 0.037 0.101 0.592 0.150 0.155 0.131 0.152 0.102

TABLE II: Comparison of ICP based methods on the HeLiPR dataset. Bold: best results, underlined: second best results.

On the AevaScenes high-speed benchmark (Table III),
Dynamic-ICP remains accurate across highway and urban
settings. On Highway Day 01, where the ego vehicle reaches
approximately 140 km/h, it attains the lowest position error
with near-best rotation, indicating stability under extreme ego
motion. In City Day 01, it delivers the best performance
on both translation and rotation, handling dense clutter and
frequent dynamic objects. In City Night 01, it sustains state-of-
the-art orientation with competitive translation despite reduced
returns and lighting artifacts. These results highlight how the
Doppler residual supplies a robust, rotation-only cue when
geometry weakens (highway, night), while motion prediction
preserves valid correspondences in dynamic urban scenes.

D. Ablation Studies

We conduct additional experiments to investigate the in-
dividual benefits of three core components of Dynamic-ICP:
velocity filter (VF), dynamic points prediction (DPP), and the
Doppler residual (DR) by deactivating each while holding
all other settings fixed. As shown in Table IV, disabling
the velocity filter means we no longer separate dynamic
from static points and, consequently, do not run dynamic

Method Highway Day 01 City Day 01 City Night 01

RTE [m] RRE [°] RTE [m] RRE [°] RTE [m] RRE [°]

ICP (point-to-point) 0.972 0.123 0.766 0.281 1.443 0.471
ICP (point-to-plane) 0.891 0.132 0.069 0.214 0.272 0.228
GICP 0.972 0.092 0.859 0.411 1.463 0.438
KISS-ICP 0.299 0.211 0.114 0.151 0.211 0.225
Doppler-ICP 1.046 0.502 0.902 0.515 0.509 0.482

Dynamic-ICP 0.268 0.115 0.065 0.114 0.258 0.225

TABLE III: Comparison of ICP based methods across sequences
on AevaScenes dataset. Bold: best results, underlined: second best
results.

points prediction. Dynamic points remain in the “static” set
and corrupt correspondences, increasing both RTE and RRE.
Removing dynamic points prediction means we still detect
dynamics with the velocity filter, but discard them and register
using only static points. Dropping Doppler residual reduces
the objective to standard point-to-plane ICP, removing the
rotation-only cue. Orientation becomes less stable in repetitive
or low-texture scenes, increasing RRE even when geometry is
well aligned. The full model (VF + DPP + DR) consistently
yields the lowest errors.

Table V compares efficiency and robustness across methods.



Method River Island 01 Riverside 05 Highway Day 01

RTE [m] RRE [◦] RTE [m] RRE [◦] RTE [m] RRE [◦]

w/o VF 0.871 0.680 0.686 0.235 0.889 0.135
w/o DPP 0.411 0.346 0.633 0.237 0.369 0.164
w/o DR 0.900 0.552 0.595 0.154 0.891 0.132

Full 0.379 0.189 0.592 0.150 0.268 0.115

TABLE IV: Ablation evaluation on Dynamic-ICP. Bold: best results,
underlined: second best results.

Method Avg. iters ↓ Conv. rate ↑ FPS ↑

ICP (point-to-point) 22.94 98.00% 13.02
ICP (point-to-plane) 17.20 99.70% 15.10
GICP 23.65 98.90% 5.68
Doppler-ICP 13.54 99.80% 14.20
Dynamic-ICP 13.50 99.80% 13.34

TABLE V: Runtime and convergence statistics on HeRCULES
dataset. Bold: best results, underlined: second best results.

Dynamic-ICP converges in substantially fewer iterations than
classic ICP variants and about the same as Doppler-ICP,
while achieving the highest throughput and matching the
best convergence rate. By contrast, GICP is the slowest and
requires the most iterations, and point-to-point/point-to-plane
either iterate more or run at a lower frame rate. These trends
indicate that incorporating Doppler and predicting dynamic
points stabilizes optimization and reduces iterations, enabling
real-time performance without sacrificing reliability.

V. CONCLUSION

We presented Dynamic-ICP, a training-free, Doppler-aware
registration framework that employs scene motion as an addi-
tional signal for scan registration. Our approach (i) estimates
ego-motion from per-point Doppler and builds a velocity filter,
(ii) clusters moving points with HDBSCAN and reconstructs
object-wise 3D velocities, (iii) predicts dynamic points with a
constant-velocity model, and (iv) aligns scans using a compact
objective that combines point-to-plane geometric residual with
a translation-invariant, rotation-only Doppler residual. Unlike
Doppler-ICP variants that require sensor–vehicle extrinsic
calibration, our approach operates without external sensors
or calibration, relying solely on FMCW LiDAR range and
Doppler.

Across three Doppler-capable datasets, HeRCULES, He-
LiPR, and AevaScenes, Dynamic-ICP delivers state-of-the-
art or competitive accuracy, particularly in high-speed, highly
dynamic scenes and geometrically repetitive environments.
Ablations confirm that the velocity filter, dynamic point pre-
diction, and Doppler residual are complementary and together
account for the largest gains in both RTE and RRE. To
encourage community adoption and reproducibility, we release
our implementation of Dynamic-ICP as open source.
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