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AbstractÐ This paper proposes a novel approach for indoor
robot localization that leverages a fusion of information from
single-chip infrared (Time-of-Flight) and radar sensors. The
aim of our research is the development of a cost-effective
and lightweight system that can achieve high-precision robot
localization. Unlike traditional localization methods based on
LiDARs or cameras, our proposed system uses single-chip
infrared and radar sensors to overcome the limitations of high
cost and bulky hardware. Specifically, we employ a Doppler
radar-based velocity motion model for the estimation of the
robot’s ego-motion, eliminating the need for additional sensors
such as IMU or wheel encoders. Next, we describe a hybrid
sensor model for single-chip infrared and radar sensors that
provides robust and accurate environmental perception with
dynamic outlier removal. Finally, we integrate these components
into a Monte Carlo localization framework to generate accurate
real-time estimation of the robot’s position and orientation.
This is the first time a single-chip infrared and radar fusion-
based framework has been applied to robot localization, to the
best of our knowledge. Through a comprehensive experimental
evaluation, we demonstrate the system’s high accuracy and
efficiency, achieving an average localization error of 9 cm in
diverse indoor environments. This remarkable performance,
combined with the low-cost and lightweight nature of our
proposed solution, positions it as a highly promising alternative
for a wide range of applications, including robotics, smart
homes, and autonomous vehicles. The significant advancements
of this novel approach offer vast potential to revolutionize the
field of localization, enabling more precise and cost-effective
navigation systems.

I. INTRODUCTION

The development of autonomous robots has received con-

siderable attention in recent years. The capacity to navigate

in complex environments with accuracy and efficiency is

an essential prerequisite for autonomous robots. Localization

plays a critical role in achieving this goal by providing robots

with information about their position and orientation relative

to their surroundings. Over the years, the robotics community

has witnessed a remarkable surge in the development of

sensor-based localization techniques. A diverse range of
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sensor-based indoor localization approaches has been pro-

posed, including WiFi, ultra-wideband (UWB), light detec-

tion and ranging (LiDAR), cameras, inertial measurement

unit (IMU), and wheel encoders, among others. These tech-

niques have varying degrees of accuracy, cost, and complex-

ity, making it essential to choose the most suitable method

based on the specific application requirements. Traditional

Fig. 1: Infradar-Localization in a warehouse environment

with 3D occupancy map generated by low-cost Infradar

sensors

localization approaches rely on external setups, which can

constrain their resilience in various situations. For instance,

UWB localization [1] requires the installation and calibration

of numerous anchors in advance, while WiFi localization

[2] depends on the availability of multiple routers to attain

a high degree of accuracy. On the other hand, LiDAR-

and camera-based localization offers a device/landmark-

independent localization for mobile robots [3][4]. Monocular

and stereo cameras are cost-effective passive sensors that

can proficiently address localization issues by serving as

a single source of information concerning an environment,

specifically in Visual Odometry (VO) [5][6] and Visual

Simultaneous Localization and Mapping (V-SLAM) [7][8].

While modern mobile robots have made great strides in their

capabilities, it is undeniable that they still face limitations in

terms of onboard computing power. Consequently, utilizing

multiple cameras to achieve 360◦ coverage can present a

daunting challenge for the robot’s onboard computer, as it

must process an enormous amount of data in real-time to

maintain optimal performance[9]. Furthermore, solutions that

rely on cameras may not perform optimally when confronted

with challenging lighting conditions (e.g. poor or extreme20
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lighting) or when obstacles obstruct the field of view[10].

In recent years, researchers have also devoted considerable

effort to developing and refining both 2D and 3D LiDAR-

based indoor localization algorithms[11][12], resulting in a

wealth of innovative solutions for accurately tracking the

movement and position of robots in complex environments.

However, these methods often have limitations, such as high

cost, bulky hardware, lack of access to valuable semantic

information, or sensitivity to dynamic environments.

To overcome these limitations, we propose a novel ap-

proach for indoor robot localization that combines single-

chip infrared and radar (This technology will be referred

to as Infradar in the following sections of this paper.)

sensor fusion, Infradar ego-motion estimation, hybrid In-

fradar sensor model, dynamic outlier removal, and Monte

Carlo localization. The key contributions of our work are as

follows:

• Infradar-Localization is, to our knowledge, the first

indoor robot localization framework that employs low-

cost single-chip infrared and radar sensors.

• A single-chip Infradar-based ego-motion estimation

method has been developed that eliminates the need for

additional sensors.

• A hybrid sensor model for Infradar-Localization that

incorporates dynamic outlier removal, further enhancing

its reliability in detecting and mitigating errors.

This paper is structured as follows: Section II reviews the

related work. Section III presents the proposed Infradar-

Localization based on low-cost single-chip infrared and radar

sensors. The experimental evaluation is described in Section.

IV. Section V summarises the study and discusses future

directions.

II. RELATED WORK

With advancements in sensor technology, researchers are

turning to low-cost options for robot localization, such

as radar and infrared sensors. These sensors have many

benefits, including their small size, low cost, robustness to

environmental factors like lighting conditions, and low power

consumption. In this section, we will conduct an in-depth

exploration of the latest approaches to robot localization

using single-chip radar and infrared sensors.

A. Ego-motion Estimation with Single-chip Radar Sensor

Recent improvements in electronics and materials science

have enabled the radar (radio detection and ranging) sensor

in a smaller package compared to earlier products. A no-

table innovation is the antenna-in-package concept, which

integrates multiple radar antennas on a small chip, also

known as single-chip radar. This technology provides sparse

resolution for 3D detection and radial velocity measurement

using Doppler effect [13][14]. The advantage of radar over

VO is that Doppler radar can directly measure the relative

velocity of stationary objects within a single frame, rather

than having the relative velocity derived from the changing

position of the stationary object in consecutive frames. Early

research, such as the work presented in [15], proposed an

instantaneous approach for 2D radar ego velocity estimation

using only one radar scan with Doppler radial velocity

measurements. The authors utilized the RANdom SAmple

Consensus (RANSAC) algorithm to filter out the moving

objects in the environment and employed the Least-SQuares

estimator (LSQ) to optimize the radial velocity of stationary

objects relative to the radar to obtain radar ego velocity. In

[16], the approach was extended to multiple radar sensors

with joint optimization of spatial. To achieve higher accuracy,

the fusion of radar measurements with inertial data has

shown impressive results [17][18][19]. However, without the

help of yaw angle the yaw drift increases with time due to

changes in the yaw rate of the MEMS IMUs. To compensate

for this, the authors in [20][21] presented variants of Radar

Odometry based on further sensor data fusion, such as Radar

Visual Inertial Odometry, Radar Thermal Inertial Odometry,

and GNSS-aided Radar Inertial Odometry.

B. Localization with Single-chip Radar Sensor

Radar sensors have been studied in disaster environments

due to their ability to operate effectively in visually degraded

conditions. However, their accuracy and density of data

are typically reduced, making localization challenging. The

authors in [22] proposed a method for radar measurement

registration with a dense LiDAR map previously gener-

ated for localization. They employed a point registration

algorithm that is independent of density for sparse radar

data. Another approach to overcome the sparsity of radar

data was proposed in [23], where a conditional Generative

Adversarial Network (GAN) was used, trained with LiDAR

data supervision. However, the heavy use of neural networks

brings considerable challenges to real-time performance on

mobile robots.

C. Localization with Single-chip Infrared Sensor

Due to the limited field of view and single distance

measurement capability of most infrared sensors, there have

been few studies on using them alone for robot localization.

Previous work [24][25] has shown that although infrared

sensors have excellent measurement accuracy, but a camera

sensor is still required because of their low spatial res-

olution. In Q2 of 2021, ST-Microelectronics released 4th
generation infrared sensor. This is the first miniaturized

multi-zone ranging Time-of-Flight (ToF) sensor that features

an 8 × 8 image resolution. The sensor presented in this

work addresses the issue of low spatial resolution present

in prior studies [24][25], thereby opening up new potential

applications such as robot localization without the need

for a vision-based algorithm. After the introduction of the

novel infrared sensor, a number of targeted studies have

shown great promise. A lightweight method is proposed

in [26] to compute collision probability from each infrared

sensor and directly on board to extract features of complex

environments. Authors in [27] proposed a solution that is

able to detect objects in 360◦ with minimal blind spots.

This design was implemented on educational robots using

multiple infrared sensors. In [28] accurate 3D pose data
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of multiple people is estimated with infrared sensors after

the supervised training. In both [26] and [29], an indoor

localization and navigation framework was developed using

infrared sensors and an external odometry module. However,

the framework is specifically designed for an online nano-

UAV processor and therefore is not applicable to mobile

robots.

D. Summary

Our approach significantly advances existing methods in

several respects:

• Based on the physical measurement characteristics of

single-chip radar, we propose the multi-strategy weight-

ing LSQ method for ego-motion estimation without the

aid of other sensors such as IMU or camera.

• Our approach doesn’t rely on a high-precision LiDAR

map for building 3D maps. Instead, we use Infradar

sensors to build 3D maps.

• With our approach, reliable global localization can be

achieved in environments with dynamic obstacles.

III. METHODOLOGY

In this paper, we employ the following conventions to

represent the various mathematical and physical quantities

used in our research:

• Scalars will be printed as lowercase, non-bold letters

(e.g. b), and constants will be printed as uppercase, non-

bold letters (e.g. B).

• Matrices will be printed as bold upper case letters, like

B.

• Vectors will be represented by bold lowercase letters,

like b.

• Subscripts and superscripts are used to denote different

frames of reference. For example, a vector b in frame

{}r will be denoted as br, and the rotation from frame

{}r to frame {}w will be represented by either the

matrix Bw
r or the quaternion bw

r .

• The global world frame is represented by {}w.

By using this formalism, we aim to provide a clear and

consistent notation that facilitates communication and un-

derstanding of our mathematical models and results. Fig. 2

shows the overview of the proposed system consisting of four

components:: single-chip Infradar, Infradar motion model,

hybrid Infradar sensor model, and Monte Carlo localization.

A. Infradar Sensor Measurements

This section provides a brief summary of the Infradar

sensors used in this work, together with their main char-

acteristics. Since the Infradar sensor is a combination of a

single-chip infrared sensor and a single-chip radar sensor, the

two sensors will be introduced separately in the following

sections.

1) Single-chip Radar Measurements: The single-chip mil-

limeter wave (mmWave) radar uses frequency-modulated

continuous wave (FMCW) to transmit (TX) signals that get

reflected by objects in its path. By detecting the reflected

signal, the range, velocity, and angle of the objects can be

determined. When the radar front-end receives the signal

(RX) reflected from an obstacle, an onboard signal mixer

combines the received and transmitted signals to generate

an intermediate frequency (IF) signal. The distance d from

object to radar can be derived as:

d =
fIFC

2s
(1)

where C denotes the speed of light 3× 108m/s, fIF repre-

sents the frequency of the IF signal, and s is the frequency

slope of the chirp. Fast Fourier Transform (FFT) is applied

to the IF signal when there are multiple obstacles present at

different distances, resulting in peaks that correspond to one

or more obstacles at specific distances. To estimate the angle

of obstacles, a linear receiver antenna array is employed in

mmWave radar. The process involves transmitting chirps with

identical initial phases and simultaneously sampling signals

from multiple receiver antennas. By analyzing the phase

differences of received signals, the Angle of Arrival (AoA)

α of the reflected signal can be mathematically calculated as

[30]:

α = sin−1(
λ ·∆ϕ

2πd
) (2)

where ∆ϕ is the phase change of the FFT peak, d represents

the distance between consecutive antennas and λ is the

wavelength. It should be noted that ∆ϕ depends on sin(α),
which exhibits a non-linear dependency. The approximation

of sin(α) as a linear function is only valid when α is small

in magnitude:

sin(α) ∼ α (3)

Therefore, the accuracy of the estimation depends on the

value of AoA, and better accuracy can be achieved when

α is small. To measure velocity, an FMCW radar emits two

chirps separated by a time interval of tc. The phase difference

obtained by processing each reflected chirp through the

range-FFT is used to calculate the velocity of the object

according to the following equation:

v =
λ ·∆φ

4πtc
(4)

where ∆φ denotes the phase difference in range-FFT and

λ represents the wavelength. However, if several moving

objects at varying speeds are at the same distance from the

radar at the time of measurement, the two-chirp velocity

method will not work, because they generate reflective chirps

with identical IF frequencies. In this case, the radar system

must transmit a set of n equally separated chirps. These

chirps are then processed by range-FFT to produce a set

of n peaks at the same location. However, each peak has

a unique phase that incorporates the phase input of both

objects. Therefore, a second FFT, known as Doppler-FFT,

is conducted on the n phasors.
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Fig. 2: Pipeline of Infradar-Localization

2) Single-chip Infrared Measurements: The single-chip

infrared sensor, presented in this paper, is the 4th generation

infrared sensor from STMicroelectronics. It is developed as

a compact and lightweight optical multi-zone time-of-flight

sensor for indoor sensing purposes. One of the key features

of the infrared sensor is its multi-zone capability, which

allows for up to 8× 8 zones with a broad 65◦ diagonal field

of view (FoV). Distance estimation is achieved by counting

the number of photons returned from each zone in each

time range and fitting the data with histogram algorithms to

detect peaks (see Fig. 3). In the case of ToF interference at

940 nm wavelength from other optical sources, an error flag

is returned to filter out noise and errors. In order to convert

the distance information of each zone into 3D coordinates

in the sensor coordinate system{}s, we apply the following

transformation based on the index and distance of each zone:

x = d ·
sinβ

cosβ
y = d · cos(α) z = d · sin(α) (5)

where the distance of the zone is represented by d, while

α and β represent the angles around the x-axis and y-axis

respectively, as shown in Fig. 3, which are dependent on the

zone index.

Fig. 3: Infrared sensor sensing principle and 8 × 8 zone

mapping

B. Infradar Ego Motion Estimation

As mentioned in the previous chapter III-A.1, a single-chip

mmWave radar measurement consists of a set of targets, their

three-dimensional (3D) positions pr, corresponding Doppler

radial velocities vrd and the signal-to-noise ratio (SNR) s of

each target. The velocity of radar at this moment is vr. The

Doppler velocity vrd is determined by taking the magnitude

(a) Ego velocity transformation
(b) Ego velocity estimation us-
ing real data

Fig. 4: Radar Ego Velocity Estimation. In (b) the green arrow

(size and orientation) represents the Doppler radial velocity

from the object, the red arrow (size and orientation) shows

the radar ego velocity, and squares are objects.

of the projection of the relative velocity vector between the

target and radar onto the ray connecting the target and the

radar, as illustrated in Fig. 4. This calculation is achieved

through the dot product of the target’s velocity vrd in the

radar frame {}rand the unit vector pointing from the radar

to the target:

−vrd =
pr

∥pr∥
· vr = rr · vr = rrxv

r
x + rryv

r
y + rrzv

r
z (6)

If we assume that the targets within the scene are motionless

and only the sensor platform is moving, each target can serve

as a constraint on the estimated velocity of the radar. If we

get a set of N detections in a radar measurement and write

6 in matrix notation, we get equation 7, and the residual e

can be derived as equation 8.







−vrd,1
−vrd,2

...

−vrd,N







=








rrx,1 rry,1 rrz,1
rrx,2 rry,2 rrz,2

...
...

...

rrx,N rry,N rrz,N












vrx
vry
vrz





︸ ︷︷ ︸

-vr
d
=Hvr

(7)

e = Hvr + vrd (8)

If the measurement errors are only present in the vari-

able vrd, we can solve Equation 7 using the linear Least
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Squares (LSQ) method. However, as we discussed in III-

A.1, according to the measurement principles of single-chip

mmWave radar, these errors that appear in the equation

7 are not only velocity-related but also position-related,

especially in terms of angle estimation of objects. Moreover,

single-chip radar is highly susceptible to noise and outliers

caused by factors such as multi-path and ghost points.

Therefore maintaining a high signal-to-noise ratio is crucial

to minimizing errors. Based on the above error analysis,

a multi-strategy weighting LSQ optimization that combines

residuals, azimuth contribution, and SNR consistency is

proposed. We define the weight wi for each correspondence

as the product of wresidual
i , wazimuth

i and wsnr
i , where each

multiplier has the following significance. First, to address the

issue of outliers, we propose a residual weighting function

derived from a robust kernel function [31], which belongs to

a family of M-estimators and provides improved resistance

to outliers.

wresidual
i =







1 if κ = 2
2ϵi
ϵ2
i
+2

if κ = 0

ϵi

(
ϵ2i

|κ−2| + 1
)κ

2
−1

otherwise

(9)

where κ represents the coefficient for the kernel’s shape, ϵi =
vr
d,i

δ
denotes the normalized residual and δ represents the

inlier noise threshold. We fix κ = 1, a pseudo-Huber kernel

function, in our work to improve computational efficiency.

Furthermore, the contribution of correspondences may not

always be evenly distributed in azimuth. The following

weighting function equation considering single-chip radar

azimuth estimation is proposed to reduce the impact of

systematic errors in angular measurements on radar ego-

motion estimation.

wazimuth
i =

cos(θi)
∑N

i=1
cos(θi)

(10)

Third, since the SNR channel provides additional information

for measurement confidence, equation 11 is designed to

penalize measurements with low SNR.

wsnr
i = e−

|si|
smax (11)

Applying the residual definition of equation 8 yields the

residual with multi-strategy weighting LSQ optimization:

em = (wresidual
i · wazimuth

i · wsnr
i )(Hvr + vrd) (12)

To account for the dynamic environment, a three-point

RANdom SAmple Consensus (RANSAC) [20] approach is

employed to identify the set of inliers from static objects for

equation 12. This method is highly efficient as only three

points are required to evaluate a hypothesis.

So far we have computed the linear velocities in x and y
directions in the radar frame {}r. Since the angular velocity

ω
b
m of the robot base frame {}b leads to an additional

velocity in the radar frame {}r as shown in equation 13, we

apply rigid body motion to determine the ω
b
m as equation

13.

v
r = ω

b
m × l

b
br + v

b (13)

(a) Raw radar measurements
with 10 s decay during rotation

(b) Infrared sub-zone with
neighbor enhancement

Fig. 5: Hybrid Infradar Sensor Model

C. Infradar Hybrid Sensor Model

The hybrid Infradar sensor model presented in this section

contains three main components, namely the radar likelihood

field model [32], the infrared endpoint beam model, and

the neighbor-enhancement model. As the visualization of

raw single-chip radar measurements presented in Fig. 5a,

it is obvious that the Beam Range model is inadequate

for the single-chip radar due to signal sparsity, multi-path

reflections, and the presence of ghost points. To address

these challenges, we have utilized the Likelihood Field model

for radar observations. The noise in single-chip radar mea-

surement is typically modeled using Gaussian distributions.

In x-y-z-space, this requires finding the nearest obstacle

in the map to the measurement coordinates. We can then

compute the Euclidean distance, denoted by d, between the

measurement coordinates and the nearest object in the map

{}m. The probability of a sensor measurement is modeled

by a zero-centered Gaussian distribution that captures the

characteristics of the sensor noise:

ϕ(d, σ) = exp

(

−
d2si

2σ2smax

)

(14)

here, σ is the standard deviation of the radar noise, si
andsmax are the SNR of the radar detections. The likelihood

field is then the product of probability from each measured

point to the closest point in the map.

In order to integrate single-chip infrared sensor distance

measurements we use the endpoint beam model proposed

by [32]. Each of the 8 × 8 zones is approximated as a

conical beam from the sensor origin to the obstacle, with

each measurement returning the nearest obstacle in that beam

zone, as shown in Fig. 5b. Here, the likelihood of a single

zone measurement lt,id is determined by the distance did
between the corresponding hypothetical zone beam endpoint

and the nearest obstacle represented in the map:

ϕ(did, σ) = exp

(

−
d2

2σ2

)

(15)

where σ represents the standard deviation of the single-chip

infrared sensor noise and did is the distance of idth zone.

The integration of a full infrared scan, which consists of 64
zone beams, is calculated by multiplying the likelihoods of

each individual beam:

p (lt | xt) =

64∏

id=1

ϕ(did, σ) (16)

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 18,2025 at 11:21:30 UTC from IEEE Xplore.  Restrictions apply. 



Although the multi-zone single-chip infrared sensor has

achieved a high resolution compared to conventional single-

chip infrared sensors, it is still insufficient for precise in-

door localization. We, therefore, propose a novel neighbor-

enhancement approach based on the endpoint beam mea-

surement model to improve the resolution of the sensor.

First, each zone (square) is divided equally into nine sub-

zones (squares). The original zone distance is assigned to

the sub-zone in the center, as shown in Fig. 5b, and the

remaining eight sub-zones are filled with no measurement.

The next step is to check the neighboring zone of each sub-

zone. If the difference between their detection distance and

the distance of the zone where the sub-zone is located falls

below the threshold γ, the sub-zone is interpolated with the

average of two distances. The threshold value is defined as

γ = ζdid, where ζ represents the enhancement-factor. On the

other hand, if the difference is above the threshold, the sub-

zone remains empty. In this way, we increase the resolution

from 8 × 8 to 8 × 8 × 8. The whole neighbor-enhancement

approach is demonstrated in Fig. 5b.

D. Infradar Monte Carlo Localization

This section first outlines the MCL algorithm and then

describes the adaptations we have made for Infradar-

Localization.

The three-step approach of the conventional MCL method

is adopted in this paper, which includes a prediction phase

using robot motion model, a correction phase using a sensor

measurement model, and a resampling phase [33]. The

particle filter utilized in this paper is factorized based on

a prior map M built also by Infradar, as expressed below:

p̂ (xt | Zt,M) = ηp (zt | xt,M) p̂ (xt | Zt−1,M) (17)

where η is a normalizer and Zt represents the measurements.

During the prediction phase, the state of the robot is esti-

mated through the use of samples:

p̂ (xt | Zt−1,M) =
∑

i

p
(
xt | s

i
t−1, ut−1

)
(18)

here, si is the ith particle in the estimator and u is the robot

motion, which is predicted based on the Infradar motion

model. In the correction phase, the weight of each particle

is calculated from the Infradar hybrid sensor model given

observations zt in map M . During the resampling phase, the

particles with higher weights are retained and the robot’s

position is calculated by combining the states and weights

of these particles. The particle filter can be initialized in two

ways: by using a distribution samples with equal weights

around the initial pose estimate, which is called tracking, or

by using a uniform distribution over all possible hypotheses,

which is referred to as global localization.

However, a key limitation of MCL arises from the static

world assumption, or Markov assumption [34]. To address

this challenge, we propose a novel Dynamic Outlier Removal

method that leverages the unique properties of single-chip

radar. In section III-B we present a three-point RANSAC to

distinguish between dynamic and static objects. The static

(a) Robot Platform (b) Sensor Platform

Fig. 6: Experimental Setup

objects are then used as inliers to estimate the radar ego ve-

locity. The dynamic objects, which are identified as outliers

by RANSAC, will also be utilized to exclude measurements

of infrared sensors that are within a certain distance threshold

ρ.

IV. EXPERIMENT EVALUATION

This section presents our experiments to demonstrate the

effective capabilities of our Infradar-Localization framework.

A. Experimental Setup

The test robot platform integrated with an omnidirectional

mecanum drive (as shown Fig. 6 left), was used in the

experiment. Experimental data was acquired using the sensor

platform shown in Fig. 6 on the right, which featured three

single-chip Infradar sensors, each containing a single-chip

mmWave Radar sensor (TI IWR6843AOP with 120◦ FoV

), and a custom single-chip infrared sensor (VL53L5CX).

All Infradar sensors were processed on-chip. In addition, the

robot was also equipped with a Sick LiDAR sensor and an

Intel Realsense D435 camera to provide baseline results. The

proposed algorithm was run on NVIDIA Jetson TX2 NX

Module.

The calibration method described in [35] was used to

calibrate the radar sensor’s extrinsic parameters, while the

approach presented in [26] was used for calibrating the

infrared sensor. The extrinsic transformation between the

coordinate frames of the infrared and radar sensors was

measured manually.

Our implementation is built upon the open-source frame-

work mcl_3dl1, which provides pointcloud-based 3D Monte

Carlo localization. We expanded this framework by intro-

ducing our Infradar motion model, integrating our hybrid

Infradar sensor model, and optimizing the processing chain

for real-time data processing. The algorithm is programmed

in C++ and is implemented on Ubuntu 18.04 and ROS

Melodic.

B. Evaluation

To evaluate the localization results, our method is com-

pared with the ground truth, which is provided by a LiDAR-

Camera-based localization system. The robot platform was

1https://github.com/at-wat/mcl_3dl
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(a) 3D map of an office (b) 3D map of a warehouse

Fig. 7: 3D maps generated by Infradar sensors

manually controlled to move around different indoor scenar-

ios, typically traveling between 0.4m/s and 0.6m/s. When

turning, the platform moved at a maximum of 0.5 rad/s.
Initially, we created a 3D occupancy map using Infradar sen-

sors with the assistance of ground truth. We then employed

only the Infradar sensors to carry out localization within this

map, as shown in Fig. 7. This is also where our approach

differs from traditional methods, which relied on the use of

high-precision LiDAR to build maps. The performance of

the proposed method was evaluated in terms of tracking and

global localization.

1) Tracking: During the pose tracking experiment, we

provided the algorithm with the robot’s initial position and

orientation and then manually controlled the robot to traverse

varying scenarios. The result is shown in Fig. 8 and 9, where

the trajectories of ground truth and Infradar-Localization are

drawn in red and green lines, respectively. LiDAR maps

are only used for reference. Translation error is defined as

the root square error of each pose Euclidean distance with

respect to the ground truth pose. It is obvious that despite

relying on low-cost Infradar sensors alone, the proposed

approach is still able to accurately track the robot’s pose

in different complex and dynamic environments and under

varying robot motions. In brief, our method is capable

of achieving a mean translation error of 9 cm in various

environments while maintaining an average computing time

of 21ms per frame. These tracking results are comparable

to high-precision 3D LIDAR used for indoor localization, as

reported in a comparative study by [11].

Fig. 8: Example of Infradar-Localization in a 7m × 10m
office environment. Mean translation error 0.07m, maximum

translation error 0.28m.

2) Global Localization: To further demonstrate the local-

ization performance, the proposed approach is also evaluated

Fig. 9: Example of Infradar-Localization in a 13m × 17m
warehouse environment with dynamic obstacles (moving

people and robots). Mean translation error 0.09m, maximum

translation error 0.24m.

(a) (b)

(c) (d) Number of Particles

Fig. 10: Global Localization with Infradar: (a), (b), and (c)

represent the state of particles (green arrow) while red arrow

denotes the ground truth.

with global localization. This means that there is no robot’s

initial pose for the algorithm. In this paper, the number of

particles in the initial distribution is determined based on

the size of the 3D map, which is 15120 particles for the

13m× 17m warehouse map. As shown in 10, in the initial

state the particles are evenly distributed over all spaces, and

then with Infradar measurements, these particles converge to

the correct pose. Through repeated experiments at different

locations, the proposed method is capable of converging

the particles to the correct location in less than 5 s on

average. It can be concluded that the proposed method offers

reliable and efficient global localization solutions in indoor

environments.

V. CONCLUSIONS

This paper introduces Infradar-Localization, the first low-

cost indoor Monte Carlo localization framework based

on single-chip infrared and radar sensors. The framework

mainly consists of Infradar ego-motion estimation, hy-

brid Infradar sensor model, dynamic outlier removal, and

lightweight Monte Carlo localization. The proposed approach
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is capable of supporting real-time localization on an em-

bedded PC with low-cost Infradar sensors. Experiments in

different environments have been performed to evaluate the

proposed method. The results demonstrate the reliability and

accuracy of the proposed framework, which is comparable

to high-precision LiDAR-based localization methods. This

remarkable performance, combined with the low-cost and

lightweight nature of our proposed solution enables more

precise and cost-effective navigation systems for most mobile

platforms such as UAVs and autonomous mobile robots.

Future works will extend the proposed system to a full

simultaneous localization and mapping (SLAM) framework.
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