
Konzeptionierung und Umsetzung eines

Frameworks zur dreidimensionalen Routen-

planung einer Flotte autonomer Flugrobo-

ter

Masterarbeit im Studiengang Mechatronik

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Fertigungsautomatisierung und Produktionssystematik
Prof. Dr.-Ing. J. Franke

Bearbeiter: Dong Wang Matrikelnr.: 22453645

Betreuer: Prof. Dr.-Ing. J. Franke

M.Sc M. Lieret

Abgabetermin: 07.09.2020

Bearbeitungszeit: 6 Monate

Erklärung

Ich versichere, dass ich die vorliegende Arbeit ohne fremde Hilfe und ohne Benutzung

anderer als der angegebenen Quellen angefertigt habe und dass die Arbeit in gleicher

oder ähnlicher Form noch keiner anderen Prüfungsbehörde vorgelegen hat und von dieser

als Teil einer Prüfungsleistung angenommen wurde. Alle Ausführungen, die wörtlich oder

sinngemäß übernommen wurden, sind als solche gekennzeichnet.

Erlangen, den 30. Juli 2020

Dong Wang

Inhaltsverzeichnis

Abbildungsverzeichnis . v

Abkürzungsverzeichnis. vii

1 Einleitung . 1

1.1 Hintergrund . 1

1.2 Problemstellung. 2

1.3 Ziel der Arbeit . 3

1.4 Aufbau und Vorgehensweise . 4

2 Literaturübersicht . 5

2.1 zentralisierte Optimierungsmethode 5

2.2 verteilte Optimierungsmethode . 5

3 Softwaregrundlagen. 7

3.1 ROS . 7

3.1.1 ROS als Softwareframework zur Robotersteuerung 7

3.1.2 ROS Master . 8

3.1.3 ROS Knoten . 9

3.1.4 ROS Nachrichten. 9

3.1.5 ROS Themen . 10

3.1.6 ROS Service . 11

3.1.7 ROS Server . 11

3.2 MAVLink . 14

3.2.1 Grundlagen des MAVLinks-Protokolls 14

3.2.2 Nachrichtenformat . 15

3.2.3 Nachrichtenfluss . 17

3.2.4 MAVROS . 18

3.3 Software in the Loop . 19

3.3.1 Gazebo . 19

3.3.2 PX4 Autopilot . 20

3.3.3 Simulation . 22

3.4 OctoMap . 22

i

INHALTSVERZEICHNIS

3.5 FCL. 27

3.6 Cplex . 29

4 Algorithmen . 31

4.1 Übersicht der Algorithmen von Routen plannung 31

4.2 Routenplanungsalgorithmen in dieser Arbeit 35

4.2.1 RRT, RRT* und informierter RRT* 35

4.2.2 A*-Algorithmus . 48

4.2.3 CBS und ECBS . 51

4.3 Bernsteinpolynome . 57

5 Methoden . 59

5.1 Mathematische Modelldefinition . 59

5.1.1 Darstellung der Trajektorie 60

5.1.2 Einschränkungen der Dynamik 60

5.1.3 Einschränkungen zur Vermeidung von Hindernissen 61

5.1.4 Einschränkungen zur Vermeidung von Interkollisionen 61

5.2 Statische Methode (ohne Zeitdimension) 62

5.2.1 Architektur statischer Methode 63

5.2.2 Kartenkonstruktion. 64

5.2.3 FCL-Kollisionserkennung . 65

5.2.4 Pfadplanung. 67

5.2.5 Trajektoriengenerierung . 68

5.3 Dynamische Methode (mit Zeitdimension) 70

5.3.1 Architektur der dynamischen Methode 71

5.3.2 Initiale Planung . 71

5.3.3 Der sichere Flugkorridor (SFC). 73

5.3.4 Der relativ sichere Flugkorridor(RSFC) 74

5.3.5 Dummy-Agenten . 78

5.3.6 Zeitzuweisung . 80

6 Simulation und Evaluation . 83

6.1 Simulation . 83

6.1.1 Trajektorienfolger . 83

6.1.2 Simulation der statischen Methode 85

6.1.3 Simulation der dynamischen Methode 85

ii

INHALTSVERZEICHNIS

6.2 Evaluation . 86

6.2.1 Evaluation der statischen Methode 89

6.2.2 Evaluation der dynamischen Methode 91

6.2.3 Bewertung der beiden Methoden 95

7 Zusammenfassung und Ausblick 101

7.1 Fazit . 101

7.2 Ausblick . 102

7.2.1 Aktuelle Einschränkungen . 102

7.2.2 Weiterentwicklung der Methoden 103

Literaturverzeichnis . 105

iii

INHALTSVERZEICHNIS

iv

Abbildungsverzeichnis

1.1 Lieferung durch Amazon Prime Air[1]. 2

1.2 DHL Paketkopter[2]. 2

3.1 ROS Master. 8

3.2 ROS Knoten. 9

3.3 ROS Themen. 11

3.4 ROS Service. 12

3.5 ROS Server. 13

3.6 Schematischer Grundaufbau von ROS. 14

3.7 MAVLink Nachrichtenformat [3]. 16

3.8 MAVLink Nachrichtenfluss [3]. 18

3.9 MAVROS [4]. 19

3.10 Flightstack. 21

3.11 PX4 Architektur [39]. 23

3.12 Simulator Nachrichtenfluss [39]. 24

3.13 Software in the Loop Architektur [40]. 24

3.14 Octree. 25

3.15 Octree-Auflösung [5]. 25

3.16 OctoMap-Auflösung[5]. 26

3.17 FCL-Architektur [6]. 28

4.1 Klassifizierung von Pfadplanung. 31

4.2 Stichprobenbasierte Algorithmen. 32

4.3 Knotenbasierte Algorithmen. 33

4.4 Auf mathematischen Modellen basierende Algorithmen. 33

4.5 Bioinspiriert Algorithmen. 34

4.6 RRT. 36

4.7 RRT Simulation [7]. 38

4.8 RRT Simulation [7]. 38

4.9 RRT Simulation [7]. 39

4.10 RRT*. 42

4.11 RRT und RRT* [8]. 43

4.12 Leistungsvergleich zwischen RRT* und informiertem RRT* [9]. 48

v

ABBILDUNGSVERZEICHNIS

4.13 A*. 49

4.14 A*-Pfadplanung in zwei Dimensionen mit Gitter [10]. 51

4.15 CBS-Pfadplanung [11]. 55

5.1 Hindernis-Kollisionsmodell und Inter-Kollisionsmodell. 62

5.2 Abwind-Effekt/Downwash-Effekt. 62

5.3 Architektur statischer Methode. 64

5.4 Kollisionsmodell. 66

5.5 Architektur der FCL. 66

5.6 Trajektorie Optimierung durch B-Spline 70

5.7 Architektur dynamischer Methode. 71

5.8 Die relativ initiale Trajektorie [12]. 76

5.9 RSFC [12]. 76

5.10 Dummy-Agenten [13]. 79

6.1 Der lineare Trajektorienfolger. 84

6.2 PID-Trajektorienfolger. 85

6.3 Architektur der Simulation der 3D-Methode. 86

6.4 Architektur der Simulation der 4D-Methode. 87

6.5 3D-Belegungskarte mit unterschiedlicher Anzahl von Hindernissen. 88

6.6 Die Beziehung zwischen Zeitlimit und Routenkosten. 89

6.7 Rechenzeit und Anzahl der Drohnen. 90

6.8 Die Optimierungszeit für 8 Drohnen mit B-Spline. 91

6.9 Optimierungszeit für 8 Drohnen mit B-Spline. 92

6.10 Die Glätte von 32 Drohnen Pfade. 93

6.11 Evaluation zur statischen Methode in Abhängigkeit von Hindernisdichte . . . 93

6.12 Rechenzeit für Pfadplanung in Abhängigkeit von Nb, 200 Hindernissen 94

6.13 Rechenzeit für Pfadplanung in Abhängigkeit von der Anzahl der Drohnen. . . 95

6.14 Rechenzeit und Pfadkosten für Pfadplanung (64 Drohnen) in Abhängigkeit von

der Hindernisdichte. 95

6.15 Pfadplanung und Simulation für 16 Drohnen. 96

6.16 Vergleich der Rechenzeit, 200 Hindernisse in der Karte. 97

6.17 Vergleich der Pfadkosten, 200 Hindernisse in der Karte. 97

6.18 Vergleich der Pfadkosten in Abhängigkeit von Hindernisdichte. 98

6.19 Vergleich der Rechenzeit in Abhängigkeit von Hindernisdichte. 98

6.20 Pfadplanung für vier Drohnen mit 3D und 4D Methode. 99

vi

Abkürzungsverzeichnis

3D statische Methode

4D dynamische Methode

ACO Ameisenkolonie-Optimierung

BIP binär-lineare Programmierung

EA Evolutionary Algorithm

ECBS Enhanced CBS

FCL Flexible Collision Library

GA genetischer Algorithmus

HIL Hardware in the Loop

ILP integrale lineare Programmierung

LQG linear-quadratic-gaussian

MA memetischer Algorithmus

MAPF Multi-Agent Pfadfindung

MAVLink Micro Air Vehicle Link

MD5 Message-Digest Algorithm 5

MILP Mixed-Integer-lineare-Programmierung

MIQP gemischt-ganzzahlige quadratische Programmierung

NLP nichtlineare Programmierung

NN neuronales Netz

ODE Open Dynamics Engine

PRM Probabilistic Road Maps

PSO Partikelschwarmoptimierung

QP quadratische Programmierung

ROS Robot Operating System

RPAS ferngesteuerten Flugzeugsystemen

RRT Rapidly-exploring random tree

RRT* Rapidly-exploring random tree*

RSFC der relativ sichere Flugkorridor

SAPF Single-Agent Pfadfindung

SCP sequenzielle konvexe Programmierung

SFC der sichere Flugkorridor

SFLA shuffled frog-leaping algorithm

SIL Software-in-the-Loop

TCP/IP Transmission Control Protocol/Internet Protocol

vii

ABKÜRZUNGSVERZEICHNIS

UAV Unbemannte Flugroboter

UDP User Datagram Protocol

viii

1 Einleitung

1.1 Hintergrund

Unbemannte Flugroboter (UAV) wurden in der Vergangenheit ausschließlich vom Militär

eingesetzt. Inzwischen wurde der Einsatz von ferngesteuerten Flugzeugsystemen (RPAS)

und kleinen Drohnen ausgeweitet, um zivile Aufgaben wie die Unterstützung von Such-

und Rettungsaktionen [14], die Überwachung von Wetterlagen und Verkehrsströmen und

die Bereitstellung von Gütern zu erledigen [15] und um als Plattform für Luftaufnahmen

zu dienen. Drohnen werden eingesetzt, um Veränderungen in der Umwelt zu bewirken.

Ein gutes Beispiel ist die Landwirtschaft, in der durch den Einsatz von Drohnen zum

Besprühen von Feldern und zum Verfolgen von Pflanzenwachstumsmustern Effizienzstei-

gerungen erzielt werden können [16].

Einen der vielversprechendsten Einsatzbereiche für Drohnen stellen Logistiksysteme dar.

Als Alternative zu starren Logistiksystemen und flurgebundenen Transportsystemen bie-

tet sich daher der Einsatz autonomer Flugroboter zum Warentransport an. Hierdurch wird

die Intralogistik um die dritte Dimension erweitert, zusätzlich kann der bislang ungenutzte

Raumbereich oberhalb der bestehender Produktionssysteme in den Materialfluss einbe-

zogen werden. Das entstehende mehrdimensionale Fördersystem zeichnet sich weiterhin

durch eine hohe Flexibilität sowie hohe Geschwindigkeit aus. Der Einsatz von Drohnen

könnte die Arbeitskosten drastisch senken und wird als potenzieller Störfaktor für die

konventionelle Paketzustellungsbranche angesehen. Online-Händler und Lieferfirmen wie

Amazon, DHL, FedEx, JD und Alibaba melden bereits Patente für die Entwicklung der

mehrstufigen Erfüllung für UAV oder
”
Drohnen-Bienenstöcke“ an, die die Bereitstellung

dieser Technologie in einer gebauten Umgebung ermöglichen würden [15][17].Es wurden in

den letzten Jahren umfangreiche Forschungsarbeiten zum möglichen Einsatz von Drohnen

in der Paketzustellung durchgeführt, vor allem im Bereich der logistischen Optimierung

[18]. Zudem versprechen sich Logistikunternehmen von der Verwendung von Drohnen die

Lösung des Problems der letzten Meile. Bislang stellt der Transportschritt vom letzten

Logistikstützpunkt zum Empfänger den aufwendigsten und damit kostenintensivsten Ab-

schnitt der Logistikkette dar[19].

1

1 EINLEITUNG

Abbildung 1.1: Lieferung durch Amazon Prime Air[1]

Abbildung 1.2: DHL Paketkopter[2]

1.2 Problemstellung

Der effiziente und zuverlässige Einsatz autonomer Multikopter in Industrieumgebungen

setzt geeignete Routen voraus. Basierend auf einer vorab generierten dreidimensionalen

Karte der Umgebung sowie während des Fluges erfasster Sensorinformationen wird eine

kollisionsfreie Flugbahn durch die Fabrikhalle berechnet. Die Berechnung eines solchen

Pfades mit minimalen Kosten von einem bekannten Startzustand zu einem bekannten

Zielzustand für einen einzelnen Agenten unter Berücksichtigung von Hindernissen und

unter Zeitbeschränkung wird als Single-Agent Pfadfindung (SAPF) bezeichnet [20].

2

1.3 ZIEL DER ARBEIT

Bei der Betrachtung der Zusammenarbeit mehrerer Drohnen müssen nicht nur die stati-

schen Hindernisse aus der Karte berücksichtigt werden, sondern auch mögliche Kollisio-

nen zwischen den UAV-Gruppen in einem Multi-Agent-System. Jede Drohne in diesem

Multi-Agent-System hat ihren eigenen Ausgangspunkt und ihr eigenes Ziel und muss ihre

Aufgaben unabhängig oder in Zusammenarbeit ausführen, und zwar ohne Störung an-

derer Drohnen. Die Routenplanung in einer komplexen Umgebung innerhalb kurzer Zeit

und unter Vermeidung von Kollisionen mit Hindernissen oder anderen Agenten wird als

Multi-Agent Pfadfindung (MAPF) bezeichnet [21][22][23].

Unterschieden wird dabei zwischen globaler Planung und lokaler Planung. Wenn die Um-

welt bekannt ist, kann eine globale Pfadplanung offline stattfinden bevor die Roboter sich

in Bewegung setzen. Die lokale Planung wird normalerweise online vollzogen und zielt dar-

auf ab, dass die Roboter in Echtzeit Hindernisse vermeiden. Die Pfadplanung beschränkt

sich auf den Hüllkörper um den Roboter herum mit dem Zweck, die nächste Bewegung

des Roboters zu berechnen und unbekannte oder dynamische Hindernisse in der Nähe

zu vermeiden und dabei die weit entfernten Hindernisse zu ignorieren, um eine schnelle

Planung zu erreichen [24][11]. Diese Arbeit konzentriert sich auf das MAPF-Problem in

bekannter Umgebung und im Offlinebetrieb.

1.3 Ziel der Arbeit

In dieser Arbeit soll ein Framework für die dreidimensionale Routenplanung einer Flotte

von Flugrobotern vorgestellt werden. Folgendes sind die Ziele dieser Masterarbeit:

v Erarbeitung einer Lösung zur dreidimensionalen Routenplanung einer variablen An-

zahl von Flugrobotern.

v Vorgegeben seien dabei stets eine Umgebungskarte in Form einer OctoMap, sowie

die Start- und Zielpunkte der einzelnen Roboter.

v Ergebnis der Routenplanung sollen roboterspezifische Trajektorien sein, die kollisi-

onsfrei sowie nach Flugstrecke optimiert sind.

v Die Kollisionsfreiheit kann dabei durch überschneidungsfreie Trajektorien oder zeit-

liche Anpassung erzielt werden.

v Bewertung der Robustheit und Leistungsfähigkeit des umgesetzten Routenplaners

mittels Simulation, Ableitung von Ansätzen zur Optimierung der Flugbahnen und

der zur Pfadgenerierung erforderlichen Rechenzeiten.

3

1 EINLEITUNG

1.4 Aufbau und Vorgehensweise

Kapitel 2 bietet einen Literaturüberblick, um die aktuell vorherrschenden Ansätze zur

Lösung dieses Problems aufzuzeigen. Kapitel 3 und 4 präsentieren die Grundlagen für

die Entwicklung der angestrebten Systeme. Dazu zählen neben Robot Operating System,

OctoMap, Mavros und Gazebo auch bestehende Algorithmen zur Routenplanung. Auch

die relativen Bernsteinpolynome werden dargestellt. Der Hauptteil umfasst die Kapitel 5

und 6, die sich im Aufbau ähneln. In Kapitel 5 werden zwei Methoden beschrieben, um

das MAPF-Problem zu lösen, nämlich die statische Methode (3D) ohne Berücksichtigung

der Zeitdimension und die dynamische Methode (4D) mit Zeitdimension. Diese beiden

Methoden werden in Kapitel 6 entwickelt und implementiert. Dem folgt in Kapitel 6

eine Übersicht der Simulationsarchitektur der beiden Methoden. Das Hauptaugenmerk

bei der Entwicklung gilt der Bewertung der zwei Methoden. Weitere bedeutende Fakto-

ren sind Rechenzeiten, Robustheit, Leistungsfähigkeit und Pfadkosten sowie Energiever-

brauch. Zusätzlich werden die Vor- und Nachteile sowie Anwendungsfelder der Methoden

vorgestellt. In Kapitel 6 fasst ein Fazit alle Ergebnisse der Evaluation in kurzer Form

zusammen und bewertet anhand dieser das entwickelte Softwaremodul hinsichtlich Lei-

stungsfähigkeit, Zuverlässigkeit und Anwendungsintegration. Kapitel 7 fasst abschließend

die Anregungen für die weitere Forschung zusammen. Den Abschluss bildet ein kurzer

Lebenslauf des Verfassers.

4

2 Literaturübersicht

2.1 zentralisierte Optimierungsmethode

Grundsätzlich gibt es zwei akademische Lösungsansätze für das MAPF-Problem: die zen-

tralisierte Optimierungsmethode und die verteilte Optimierungsmethode [25][26]. In [27]

formulierte D. Mellinger die zentralisierte Optimierungsmethode in ganzzahligen Ein-

schränkungen für die quadratische Programmierung mit gemischten Ganzzahlen (MIQP)

um. Aufgrund der rechnerischen Komplexität des MIQP sind jedoch mehr als 500 Sekun-

den erforderlich, um die Flugbahn von vier Agenten zu generieren. In [28] wird die sequen-

zielle konvexe Programmierung (SCP) vorgeschlagen, um die nicht konvexen Bedingungen

durch konvexe zu ersetzen. SCP zeigt gute Leistung bei der Planung einer kleinen Anzahl

von Quadrotoren, ist aber ungeeignet für ein großes Team und eine komplexe Umgebung.

Robinson D Reed hat in [29] die nichtlineare Programmierung (NLP) mit sequenzieller

Planung kombiniert, um nichtlineare Einschränkungen direkt zu behandeln. Diese Ver-

wendung der sequenziellen Planungsmethode ermöglicht eine höhere Skalierbarkeit. Eine

Einschränkung ist jedoch, dass für eine komplizierte Umgebung, z. B. überfülltes Lager,

keine Lösung gefunden werden kann.

2.2 verteilte Optimierungsmethode

Eine verteilte Optimierungsmethode wird ebenfalls in Betracht gezogen, um die Gesamt-

planungszeit durch Verteilung der Rechenlast zu reduzieren. Ansätze basierend auf linear-

quadratic-gaussian (LQG) Hindernis [30][31] und gepuffertem Voronoi-Zellen [32] zeigen,

dass ein kollisionsfreier Pfad in Echtzeit erzeugt werden kann. Solche verteilten Methoden

vermögen jedoch nicht, Vollständigkeit und Abwesenheit von Deadlocks zu gewährleisten.

In [33] schlagen Yu and LaValle eine Methode vor, die sowohl optimale Lösungen als

auch eine hohe Effizienz garantiert. Um dieses Ziel zu erreichen, entwerfen sie basierend

auf der integralen linearen Programmierung (ILP) neuartige und vollständige Algorith-

men zur Optimierung für jedes der vier Ziele. Dann verbessern sie die Rechenleistung

dieser Algorithmen durch die Einführung prinzipieller Heuristik. Die Kombination von

ILP-Modell-basierten Algorithmen und Heuristiken erweist sich als äußerst effektiv und

ermöglicht die Berechnung optimaler Lösungen für Probleme mit hunderten von Robotern

5

2 LITERATURÜBERSICHT

oft in wenigen Sekunden. Allerdings ist diese Methode auf zweidimensionale Modelle be-

schränkt. Bei drei- oder sogar vierdimensionalen Modellen wird diese Methode aufgrund

der zunehmenden zeitlichen Komplexität extrem zeitaufwendig [33].

Diese Arbeit hat zum Ziel, eine verteilte Optimierungsmethode mit schnellem erkunden-

den zufälligen Baum (RRT*) in drei Dimensionen und mit konfliktbasiertem Suchen in

vier Dimensionen zu entwickeln [11]. Dieses Modell für einen sicheren Flugkorridor (Eng-

lisch: safe flight corridor) wurde eingeführt, um den Rechenaufwand zu reduzieren [12].

6

3 Softwaregrundlagen

In diesem Kapitel werden die zur Umsetzung des in dieser Arbeit entwickelten Software-

moduls benötigten Grundlagen näher betrachtet. Dazu zählt das Robot Operating System

(ROS) zur Steuerung des eingesetzten Flugroboters und zur Ausführung der entwickel-

ten Programmbausteine. Des Weiteren werden die zur Modellierung und Simulation des

Flugroboters genutzte Open-Source-3D-Robotersimulator sowie die genutzten Software-

bibliotheken OctoMap und Flexible Collision Library (FCL) vorgestellt. Die OctoMap-

Bibliothek implementiert einen 3D-Belegungsgitter-Mapping-Ansatz, der Datenstruktu-

ren und Mapping-Algorithmen in C ++ bereitstellt, die besonders für die Robotik geeig-

net sind. FCL wird zur Kollisionserkennung verwendet. Schließlich folgt eine Betrachtung

der eingesetzten mathematische Programmierlöser für lineare Programmierung.

3.1 ROS

3.1.1 ROS als Softwareframework zur Robotersteuerung

Das als Robot Operating System (ROS) bekannte flexible Software-Framework enthält

eine Sammlung von Bibliotheken, Konventionen und Tools zum Programmieren einer

Vielzahl von Roboterapplikationen und -anwendungen. Dies vereinfacht die Entwicklung

komplexer und robuster Systeme und Automatisierungslösungen für eine Vielzahl von

Entwicklungsteams und Roboterplattformen erheblich. Das Framework entstand aus ei-

ner Kombination von zwei Forschungsprojekten der Stanford University und der Willow

Garage-Softwarearchitektur für die Implementierung von Servicerobotern(Personal Ro-

botics Program). Aufgrund der weitgehend freien Zugänglichkeit und Verfügbarkeit einer

großen Anzahl bereits implementierter Softwarelösungen für eine große Anzahl von Robo-

tern und integrierbaren Sensoren, einer weltweit wachsenden Community von Entwicklern

und Forschungsteams sowie des Open-Source-Konzepts ist ROS zu einer weitverbreiteten

Plattform für eine Vielzahl von Forschungs- und Entwicklungsprojekten der Automatisie-

rungstechnik und Robotik entwickelt geworden [34][35]. Grundsätzlich basiert ROS auf

einem Basissystem, das verschiedene Module bereitstellt, um eine effiziente und erfolg-

reiche Implementierung und Anwendung verschiedener automatisierter Applikationen im

Bereich der Robotik zu ermöglichen. Dazu gehören eine standardisierte Kommunikations-

7

3 SOFTWAREGRUNDLAGEN

infrastruktur, spezifische Bibliotheken für Robotik und Sensortechnologie sowie Hilfsmittel

für die Visualisierung und Diagnose der entwickelten Softwaremodule. Dieses Kernsystem

kann bei Bedarf auch mit sogenannten Softwarepaketen erweitert werden, die von der Ent-

wicklergemeinschaft frei bereitgestellt oder vom Benutzer implementiert werden. Derzeit

stehen über 3000 öffentlich verfügbare Pakete zur Integration zur Verfügung [36][35].

3.1.2 ROS Master

Das ROS-Framework besteht aus verschiedenen Teilen, nämlich Knoten, Nachricht, The-

ma, Dienste, und Server. Zur Verwaltung einzelner ROS-Knoten, Dienste, Klienten,

Aktionenservern und Aktionenklienten dient der sogenannte ROS-Master. Der ROS-

Master stellt den übrigen Knoten im ROS-System Namens- und Registrierungsdienste

zur Verfügung. Er verfolgt Verlage und Abonnenten von Themen und Diensten. Die Rol-

le des Masters besteht darin, einzelnen ROS-Knoten zu ermöglichen, sich gegenseitig zu

lokalisieren. Sobald sich diese Knoten gefunden haben, kommunizieren sie miteinander.

Dieses zentrale Element jeder ROS-Anwendung steuert die Kommunikation mittels der

Knoten, Dienste und Aktionen untereinander. Hierzu müssen sich alle Module vor Pro-

grammausführung bei diesem Master registrieren und angeben mit welchen Themen sie

zur Laufzeit interagieren wollen. Die Interaktionen können das Senden und Empfangen

von Nachrichten, Serviceanfragen und -antworten oder Ziel- und Statusveröffentlichungen

enthalten. Auf diese Weise können sich einzelne Paketbausteine finden und eine Kommu-

nikation untereinander aufbauen [35]. Abbildung 3.1 stellt schematisch dar, die bei Master

registrierten ROS-Knoten sich erkennen und miteinander kommunizieren.

Abbildung 3.1: ROS Master

8

3.1 ROS

3.1.3 ROS Knoten

Zum besseren Verständnis des ROS-Prinzips werden in diesem Abschnitt das Grund-

konzept und die Funktionsweise des bereitgestellten Kommunikationssystems erläutert.

Jede auf dem Roboterbetriebssystem basierende Softwareanwendung besteht normaler-

weise aus einem oder mehreren sogenannten Knoten. Jeder Knoten stellt ein unabhängiges

und ausführbares Programm dar, das beispielsweise einen Algorithmus, eine Berechnung

oder andere nützliche Aufgaben zur Erreichung bestimmter Ziele übernimmt. Die einzel-

nen Programme kommunizieren über standardisierte Nachrichten über das Transmission

Control Protocol/Internet Protocol (TCP/IP) und das User Datagram Protocol (UDP)

miteinander. Dies stellt unter anderem sicher, dass einzelne Knoten auch auf verschiede-

nen Computern ausgeführt werden können, die nur in einem Netzwerk verbunden sind. So

ist es beispielsweise möglich, Knoten auf unterschiedlichen Computern mit unterschiedli-

chen Anforderungen an die Leistung der bereitgestellten Hardware auszuführen. Auf diese

Weise kann beispielsweise eine an einem Roboter angebrachte Kamera zur Umgebungser-

kennung auf dem Bordcomputer gestartet werden. Die eigentliche Bildverarbeitung und

Weiterverarbeitung der Sensordaten erfolgt jedoch durch einen leistungsstarken Compu-

ter, wie Abbildung 3.2. Außerdem können die beim Master registrierten Knoten die ver-

schiedene Themen abonnieren und veröffentlichen, damit die Nachrichten zwischen den

Knoten in den zugeordneten Themen gesendet und empfangen werden.

Abbildung 3.2: ROS Knoten

3.1.4 ROS Nachrichten

Nachrichten, die von einem Knoten empfangen oder gesendet werden können, werden in

der Regel bestimmten Themenbereichen zugeordnet. Grundsätzlich können die Namen frei

9

3 SOFTWAREGRUNDLAGEN

gewählt werden, sollten jedoch durch einen eindeutigen Begriff wie Motor- oder Raddreh-

zahl beschrieben werden, der die in der Nachricht enthaltenen Daten eindeutig beschreibt.

Für Nachrichten, die in der Robotik und Automatisierungstechnik häufig verwendet wer-

den, wie z. B. Position und Positionsinformationen, existieren bereits vordefinierte Daten-

strukturen. Weitere Knoten können die genannten Themen abonnieren und haben somit

Zugriff auf alle Nachrichten, die dem jeweiligen Thema zugeordnet und veröffentlicht sind.

Darüber hinaus können mehrere Themen innerhalb eines Knotens abonniert oder Nach-

richten an eine beliebige Anzahl von Themen gesendet werden. Besteht ein Softwaremodul

aus mehreren Knoten, ist es möglich, mehrere Nachrichten von verschiedenen Knoten zu

einem Thema zu senden und ein Thema mit mehreren Knoten gleichzeitig zu abonnieren.

Dieses Knoten- und Themenkonzept ermöglicht eine effiziente und einfache Verknüpfung,

und zwar auch für Anwendungen, die in verschiedenen Programmiersprachen entwickelt

wurden. Durch die Kapselung der einzelnen Operationen in verschiedenen Knoten wird

die Komplexität des zugrunde liegenden Quellcodes im Vergleich zu einem einzelnen Pro-

gramm erheblich reduziert. Dadurch ist genau bekannt, welche Softwarekomponente von

welchem Knoten ausgeführt wird. Die Fehlertoleranz wird auch durch den modularen

Aufbau der Software reduziert. Der Absturz eines isolierten Knotens führt normalerweise

nicht zu einem vollständigen Systemausfall [35].

3.1.5 ROS Themen

ROS Themen sind Busse, über die Knoten Nachrichten austauschen können. Themen

haben eine anonyme abonnieren- und veröffentlichen-Semantik, die die Produktion von

Informationen von ihrem Verbrauch entkoppelt. Im Allgemeinen wissen die Knoten nicht,

mit wem sie kommunizieren. Stattdessen abonnieren Knoten, die an Daten interessiert

sind, das relevante Thema. Knoten, die Daten generieren, veröffentlichen das relevante

Thema. Es kann mehrere Herausgeber und Abonnenten eines Themas geben. Das be-

deutet, dass die Themen für unidirektionale Streaming-Kommunikation vorgesehen sind.

Jedes Thema ist stark vom ROS-Nachrichtentyp abhängig, der zum Veröffentlichen ver-

wendet wird, und Knoten können nur Nachrichten mit einem passenden Typ empfan-

gen. Der Master erzwingt keine Typkonsistenz zwischen den Herausgebern, aber Abon-

nenten stellen nur dann einen Nachrichtentransport her, es sei denn, wenn die Typen

übereinstimmen. Darüber hinaus prüfen alle ROS-Clients, ob eine aus den Nachrichten-

dateien berechnete kryptografische Hashfunktion vom Typ Message-Digest Algorithm 5

(MD5) übereinstimmt. Diese Überprüfung stellt sicher, dass die ROS-Knoten aus konsi-

stenten Codebasen kompiliert wurden. Abbildung 3.3 zeigt, wie der Kameraknoten eine

Nachricht unter dem ROS-Thema image-data veröffentlicht, damit diese von den dieses

10

3.1 ROS

Thema abonnierenden Knoten Image-Processing und Image-Display empfangen werden

kann.

Abbildung 3.3: ROS Themen

3.1.6 ROS Service

Der ROS-Service stellt eine weitere Kommunikationsstruktur zur Verfügung, die vor allem

für verteilte Systeme genutzt wird. Dabei wird ein Service von einem Knoten veröffentlicht.

Dieser wird mit den bereits erläuterten Themen ebenfalls mit einem eindeutigen Namen

versehen. Im weiteren Verlauf der Datenaustausches durch ein eindeutig definiertes Paar

an Nachrichten. Hier können Nachrichten in Anfragen und Antworten gesendet werden.

So initialisiert ein Knoten einen Service unter den Namen und ein Klient Knoten abon-

niert diesen Dienst durch das Senden einer Anfragenachricht. Anschließend wartet dieser

auf eine eingehende Antwort. Der Service ist dabei nur solange aktiv, bis er die vom

Klienten erhaltene Nachricht und das Endergebnis veröffentlicht hat. Bis zu einer erneu-

ten Anfrage veröffentlicht er keine neuen Nachrichten mehr. Als typisches Beispiel für

eine solche Servicebeziehung kann ein Bildverarbeitungsalgorithmus wie in Abbildung 3.4

angeführt werden. Dort fordert der Image-Processing Knoten zuerst image data an, der

Kameraknoten sammelt Daten von der Kamera und sendet dann die Antwort.

3.1.7 ROS Server

Ein weiterführendes komplexeres Kommunikationskonzept im Sinne des Service-Klient-

Prinzips ist die Struktur Status-Action-Server/-Klient-Struktur. Die Funktionsweise ist

11

3 SOFTWAREGRUNDLAGEN

Abbildung 3.4: ROS Service

dabei der vorangehend erläuterten Service-/Klient-Kommunikation sehr ähnlich. Hier-

bei besteht der Basisaufbau aus einem Server- und einem Klient-Knoten. Der große Un-

terschied zur Service-Klient-Kommunikation besteht unter anderem darin, dass die vom

Action-Server wahrnehmbare Aktion im Verlauf abgebrochen werden kann. Dieses Kon-

zept ist vor allem für Aktionen geeignet, deren Ausführung über einen gewissen Zeitraum

hinweg stattfindet. Dies ermöglicht es dem Benutzer, gestartete Aktionen durch direkten

Eingriff wieder abzubrechen. Auch wird eine Feedback-Möglichkeit zur Kontrolle bereit-

gestellt. Die Kommunikation zwischen Action-Server und -Klient erfolgt dabei über das

sogenannte
”
ROS Action Protocol“, welches hierarchisch über den ROS Nachrichten zur

Kommunikation zwischen einfachen Knoten angesiedelt ist. Dazu müssen in einem an-

deren Dokument das zu einer Aktion gehörende Ziel, das Feedback und das Ergebnis

festgehalten werden. Diese essenziellen Bausteine werden durch ROS Nachrichtentypen

miteinander verknüpft. Nach dem Start des Action-Servers wird dieser aktiv und für den

dazugehörigen Action-Klienten sichtbar. Erhält Letzterer eine positive Rückmeldung des

Servers, wird ein neues Ziel bestimmt. Dies wird die Funktion des Action-Servers abon-

niert und damit die Programmausführung durch diese Aufgaben. Dies ist der Fall, der

dem Server gehört. Zusätzlich wird für jedes Ziel eine sogenannte Status Maschine ange-

legt, die Informationen über den Status des zugeordneten Ziels gibt. Je nach gewünschter

Komplexität sind hier unterschiedliche Ausgaben möglich. Meist wird allein zwischen den

Statuswerten
”
Aktiv“,

”
Andauernd“ und

”
Fertig“ unterschieden. Auch das Senden eines

neuen Ziels erfordert einen neuen Programmdurchlauf, da es grundsätzlich nicht möglich

ist, dass mehrere Ziele für den gleichen Server aktiv sind. Ist der Programmablauf er-

folgreich und somit das eingegebene Ziel erreicht, hat der Action-Server eine bestimmte

definierte Ergebnisnachricht. Der Server erlaubt keinen Zugriff durch neue Nachrichten

12

3.1 ROS

solange kein neues Ziel zugesendet wird. Ein möglicher Anwendungsfall für die Kommu-

nikation zwischen Action-Server und -Klient stellt das Ansteuern einer Position im Raum

durch ein autonomes Fahrzeug dar. Dabei werden als Ziel die Koordinaten der Endposi-

tion bestimmt. Während der Fahrt kann das Fahrzeug Feedback beispielsweise in Form

der aktuellen Position, Geschwindigkeit und Fahrzeit geben. Ist die Zielposition erreicht,

kann diese als Ergebnis veröffentlicht werden, um das Fahrzeug anzuhalten oder ein neues

Ziel zu übermitteln [35]. Abbildung 3.5 zeigt ein Beispiel für eine Klientenbeziehung in

der Bildverarbeitung, die ausschließlich aktiv wird, sobald die Kamera eine neue Bildda-

tei übermittelt. Anschließend wird das bearbeitete Bild aus dem Kameraknoten einmalig

veröffentlicht. Dann empfangt der Image-Processing-Knoten das bearbeitete Bild unter

dem Thema Image Data.

Abbildung 3.5: ROS Server

Die Verknüpfung von Knoten untereinander ist in Abbildung 3.6 illustriert. ROS-

Metapakete beinhalten mehrere, thematisch oder funktionell zusammengehörige ROS-

Pakete und werden zur Organisation von ROS-Paketen verwendet. ROS-Pakete stellen

einen oder mehrere Knoten (Nodes) zur Verfügung, die Datenströme via multicast zu be-

stimmten Themengebieten (Topics) bereitstellen und auf Datenströme von anderen Kno-

ten zugreifen (publish, subscribe). Knoten können zudem Dienste (Services) anbieten. Ein

Dienst realisiert eine Ende-zu-Ende-Kommunikation nach dem Prinzip Anfrage/Antwort.

Ein zentraler Master-Knoten registriert und verwaltet alle Knoten sowie deren Themen-

gebiete und Dienste.

13

3 SOFTWAREGRUNDLAGEN

Abbildung 3.6: Schematischer Grundaufbau von ROS

3.2 MAVLink

Um eine Datenkommunikation zwischen dem ROS-Framework und der Drohne herzustel-

len, mittels der Befehle zur Drohne gesendet und Daten von der Drohne empfangen werden

können, wird ein Kommunikationsprotokoll namens Micro Air Vehicle Link (MAVLink)

eingeführt.

3.2.1 Grundlagen des MAVLinks-Protokolls

MAVLink ist ein Protokoll hauptsächlich für die Kommunikation mit kleinen unbemann-

ten Fahrzeugen, die als Header-Nachrichten-Marshalling-Bibliothek konzipiert ist. Das

MAVlink-Protokoll wurde 2009 von Lorenz Meier von der Computer Vision and Geometry

Group der Eidgenössischen Technischen Hochschule Zürich unter der Open-Source-Lizenz

LGPL veröffentlicht. Als Open-Source-Kommunikationsprotokoll auf höherer Ebene ba-

siert Mavlink-Protokoll auf serieller Kommunikation, den Standards CAN-Bus und SAE

AS-4 und soll eine Sende- und Empfangsregel formulieren und eine Prüfsummenfunktion

für die Daten hinzufügen, die häufig verwendet werden, wenn kleine Flugzeuge mit Bo-

denstationen (oder anderen Flugzeugen) kommunizieren. Das Protokoll definiert die Re-

geln für die Parameterübertragung in Form einer Nachrichtenbibliothek, die verschie-

dene Arten unbemannter Luftfahrzeuge, z. B. Startflügelflugzeuge, unbemannte Dreh-

flügler und unbemannte Fahrzeuge unterstützt. Wie das ROS-Framework folgt auch das

MAVLink-Protokoll einem modernen hybriden Publish-Subscribe- und Punkt-zu-Punkt-

14

3.2 MAVLINK

Entwurfsmuster: Datenströme werden als Themen gesendet/ veröffentlicht, während

Unterprotokolle wie das Missionsprotokoll oder das Parameterprotokoll bei erneuter

Übertragung Punkt-zu-Punkt sind.

Nachrichten werden als XML-Dateien formatiert. Jede XML-Datei definiert den Nach-

richtensatz, der von einem bestimmten MAVLink-System unterstützt wird, das auch als

”Dialekt”bezeichnet wird. Der Referenznachrichtensatz, der von den meisten Bodenkon-

trollstationen und Autopiloten genutzt wird, ist im common.xml-Format definiert (die

meisten Dialekte bauen auf dieser Definition auf).

Die MAVLink-Toolchain generiert anhand der XML-Nachrichtendefinitionen MAVLink-

Bibliotheken für jede der unterstützten Programmiersprachen. Drohnen, Bodenkontroll-

stationen und andere MAVLink-Systeme verwenden die generierten Bibliotheken zur

Kommunikation. Diese sind in der Regel MIT-lizenziert und können daher in jeder Closed-

Source-Anwendung ohne Einschränkungen verwendet werden, ohne den Quellcode der

Closed-Source-Anwendung zu veröffentlichen.

3.2.2 Nachrichtenformat

Wie in Abbildung 3.7 gezeigt, hat jeder Nachrichtenrahmen die gleiche Struktur. Das rote

und die grünen Felder in der Grafik repräsentieren jeweils ein Datenbyte. Die Länge der

Daten im grauen Feld ist nicht festgelegt.

In Version 1.0 wird FE als Startflag(stx) verwendet(rot markiert). Diese Flag ist nützlich,

wenn der Empfänger des MAVLink-Nachrichtenrahmens eine Nachrichtendecodierung

durchführt. Das zweite Feld repräsentiert die Bytelänge (len) der Playload (Nutzlast,

grau markiert), die in der Nutzlast zu verwendenden Daten im Bereich von 0 bis 255.

Das empfangende Ende des MAVlink-Nachrichtenrahmens kann diese Information mit

der tatsächlich empfangenen Nutzdaten vergleichen, um deren Integrität zu verifizieren.

Das dritte Feld stellt die Sequenznummer (seq) des aktuellen Nachrichtenrahmens dar.

Jedes Mal, wenn eine Nachricht gesendet wird, wird der Wert dieses Bytes um 1 erhöht,

bis die Zählung nach dem Maximalwert von 255 wieder bei 0 beginnt. Diese Sequenznum-

mer wird vom Empfänger des MAVLink-Nachrichtenrahmens verwendet, um das Nach-

richtenverlustverhältnis zu berechnen, das der Signalstärke entspricht. Das vierte Feld

stellt die Systemnummer (sys) des Geräts dar, das diesen Nachrichtenrahmen gesendet

hat. Die Standardsystemnummer ist 1, wenn PIXHAWK zum Flashen der PX4-Firmware

verwendet wird. Die Systemnummer wird verwendet, um zu identifizieren, auf welchem

Gerät die Nachricht vom Empfänger des MAVLink-Nachrichtenrahmens gesendet wird.

Das fünfte Feld stellt die Einheitennummer (comp) des Geräts dar, das diesen Nach-

richtenrahmen gesendet hat. Der Standardwert ist 50, wenn PIXHAWK zum Flashen

15

3 SOFTWAREGRUNDLAGEN

Abbildung 3.7: MAVLink Nachrichtenformat [3]

der PX4-Firmware verwendet wird. Die Einheitennummer, um die Einheit des Geräts

zu identifizieren, das die Nachricht vom Empfänger des MAVLink-Nachrichtenrahmens

empfangen hat. Es ist vorerst nutzlos. Das sechste Feld stellt die Nummer (msg) des

Nachrichtenpakets in der Nutzlast dar. Diese unterscheidet sich von der Sequenznum-

mer. Der Empfänger des MAVLink-Nachrichtenrahmens muss anhand dieser Nummer

bestimmen, welche Nachricht in der Nutzlast platziert wird. Die letzten zwei Bytes sind

16-Bit-Prüfbits, CKB sind die oberen acht Bits und CKA sind die unteren acht Bits. Der

Prüfcode wird vom CRC-16-Algorithmus(zyklische Redundanzprüfung) erhalten. Der Al-

gorithmus führt die CRC-16-Berechnungfür die gesamte Nachricht durch (vom Startbit

bis zum Ende der Nutzlast plus einem zusätzlichen MAVLINK CRC EXTRA-Byte), um

einen 16-Bit-Prüfcode zu erhalten. Jede der zuvor erwähnten Nutzdaten in der Nutzlast

(angezeigt durch die Nachrichtenpaketnummer) gibt einen MAVLINK CRC EXTRA an.

16

3.2 MAVLINK

Dieser MAVLINK CRC EXTRA wird von der XML-Datei generiert, die den MAVLink-

Code generiert. Wenn das Flugzeug und die Bodenkontrollstation unterschiedliche Ver-

sionen des MAVLink-Protokolls verwenden, sind die von den beiden Parteien berechneten

Prüfcodes unterschiedlich, sodass die MAVLink-Protokolle zwischen verschiedenen Versio-

nen nicht ordnungsgemäß zusammenarbeiten. Durch diese Methode wird das erhebliche

Fehlerrisiko einer Kommunikation zwischen verschiedenen Versionen vermieden.

Gemäß dem Format dieser Nachrichten muss der Absender immer die Felder System-ID

und Komponenten-ID ausfüllen, damit der Empfänger weiß, woher das Paket stammt. Die

System-ID ist eine eindeutige ID für jedes Fahrzeug oder jede Bodenkontrollstation. Bo-

denkontrollstationen verwenden normalerweise eine hohe System-ID wie 255 und Fahrzeu-

ge verwenden standardmäßig 1 (dies kann durch Setzen des Parameters SYSID THISMAV

geändert werden). Die Komponenten-ID für die Bodenkontrollstation oder den Flugregler

lautet normalerweise 1. Andere MAVLink-fähige Geräte im Fahrzeug (etwa Begleitcom-

puter, Gimbal) sollten dieselbe System-ID wie der Flugcontroller verwenden, jedoch eine

andere Komponenten-ID.

3.2.3 Nachrichtenfluss

In diesem Format verpackt wird die Nachricht zum Fahrzeug oder zur Bodenkontrollsta-

tion gesendet. Abbildung 3.8 zeigt ein Beispiel für den Nachrichtenfluss zwischen Boden-

kontrollstation und Drohne. Sobald eine Verbindung zwischen den beiden hergestellt ist,

sendet jedes Gerät (auch bekannt als System) die Heartbeat-Nachricht (orange Pfeile in

der Abbildung). Diese wird im Allgemeinen verwendet, um anzuzeigen, dass das Gerät,

das die Nachricht sendet, aktiv ist.

Sowohl das Flugzeug als auch die Bodenkontrollstation senden dieses Signal (normalerwei-

se in der 1-Hertz-Frequenz), die Bodenkontrollstation und das Flugzeug bestimmen, ob sie

das Flugzeug oder die Bodenkontrollstation verloren haben, je nachdem, ob das Heartbeat-

Paket rechtzeitig empfangen wird. Wenn beide Geräte das Heartbeat-Paket des anderen

empfangen haben, fordert die Bodenkontrollstation die gewünschten Daten (und die Rate)

an, indem sie Nachrichten der folgenden Typen REQUEST DATA STREAM und COM-

MAND LONG sendet. REQUEST DATA STREAM unterstützt das Festlegen der Rate

von Nachrichten. COMMAND LONG mit einem Befehl SET MESSAGE INTERVAL bie-

tet eine genaue Kontrolle darüber, welche Nachrichten gesendet werden (und deren Rate),

wird jedoch nur von ArduPilot 4.0 und höher unterstützt. Dann bekommt die Drohne die

Anfordern-Nachricht und sendet die angeforderte Daten per MAVLink-Nachricht. Falls die

Bodenkontrollstation die Nachricht mit Daten empfängt, ist dieser Kommunikationspro-

zess beendet. Falls nicht, wird die Anfordern-Nachricht erneut gesendet, bis diese Daten

17

3 SOFTWAREGRUNDLAGEN

Abbildung 3.8: MAVLink Nachrichtenfluss [3]

empfangen werden. Wenn eine Bodenkontrollstation einen Befehl an das Flugzeug sen-

det (weinrote Pfeilspitze in der Abbildung) und dieser Befehl empfangen wird, sendet die

Drohne eine ACK-Nachricht als Bestätigung zurück an die Bodenkontrollstation. Erhält

die Kontrollstation keine ACK-Nachricht von der Drohne, ist das ein Hinweis dafür, dass

die Drohne den Befehl möglicherweise nicht bekommen hat.

3.2.4 MAVROS

MAVROS ist ein ROS-Paket, das die erweiterbare MAVLink-Kommunikation zwi-

schen ROS-Framework, MAVLink-fähigen Autopiloten und MAVLink-fähigen Boden-

kontrollstationen ermöglicht. Der Hauptkommunikationsknoten des Pakets ist der

MAVROS-Knoten, der das Thema mavros msgs/Mavlink abonniert und das Thema ma-

vros msgs/Mavlink und diagnostic msgs/DiagnosticStatus veröffentlicht, um die Daten

und Befehle zwischen Drohnen oder Simulator und ROS zu übertragen. Neben den Haupt-

themen gibt es viele Unterthemen, um die verschiedenen Kommunikationsfunktionen zu

implementieren. So kann zum Beispiel das Thema geometry msgs/PoseStamped die ak-

tuelle Positionen der Drohne veröffentlichen und die Sollwertpositionen vom ROS an die

Drohne weitergeben. Ein weiterer Knoten mavros extras, ermöglicht die Ergänzung von

ROS-Paketen durch zusätzliche Kommunikations-Plugins etwa für Schwingungen und Ka-

meradaten, die in mavros node nicht enthalten sind.

18

3.3 SOFTWARE IN THE LOOP

Abbildung 3.9: MAVROS [4]

3.3 Software in the Loop

Um die Implementierung des Algorithmus zu simulieren und die Software zu testen,

wird die Methode Software-in-the-Loop (SIL) vorgestellt. SIL bezeichnet das Testen von

ausführbarem Code wie Algorithmen (oder sogar eine gesamte Controller-Strategie), der

gewöhnlich für ein bestimmtes mechatronisches System geschrieben wurde, in einer Mo-

dellierungsumgebung, um die Kosten zu verringern und dem Test zu vereinfachen. Für

diese Arbeit werden die Umwelt und die Drohnen in Gazebo modelliert und die Verbin-

dung zwischen dem Gazebo Simulator und ROS-Framework durch PX4 realisiert. Durch

diese Vorgehensweise werden Kollisionsrisiken vermieden.

3.3.1 Gazebo

Gazebo Simulator ist ein Open-Source-3D-Robotersimulator, der von 2004 bis 2011 Be-

standteil des Player Project war [37]. Im Jahr 2011 wurde Gazebo ein unabhängiges

Projekt, das von Willow Garage unterstützt wurde. Im Jahr 2012 wurde die Open Source

Robotics Foundation (OSRF) zum Verwalter des Gazebo-Projekts und änderte dessen

Namen 2018 zu Open Robotics [38].

Gazebo integrierte die Physik-Engine Open Dynamics Engine (ODE), OpenGL-Rendering

und Support-Code für die Sensorsimulation und die Akteursteuerung. Gazebo kann

19

3 SOFTWAREGRUNDLAGEN

mehrere Hochleistungs-Physik-Engines wie ODE oder Bullet verwenden (die Standar-

deinstellung ist ODE) und bietet eine realistische Präsentation von Umgebungen, ein-

schließlich hochwertiger Darstellung von Licht, Schatten und Texturen. Der Simulator

kann Sensoren modellieren, die die simulierte Umgebung erfassen, beispielsweise Laser-

Entfernungsmesser, Kameras (einschließlich Weitwinkel) und Sensoren im Kinect-Stil.

3.3.2 PX4 Autopilot

Der im Rahmen dieser Arbeit verwendete Autopilot PX4 stellt eine breit einsetzbare Kon-

trollmöglichkeit für Flugroboter dar und ist mit weiteren Plattformen, wie ROS und den

von ROS unterstützten Visualisierungswerkzeugen Gazebo und RViz kompatibel. Der PX4

Autopilot ist Teil eines Open-Source Projektes namens Dronecode Project, das auf ko-

stengünstige autonome Flugzeuge ausgerichtet ist. Das Projekt startete 2009 und wird am

Computer Vision and Geometry Lab der ETH Zürich weiterentwickelt und eingesetzt und

vom Autonomous Systems Lab und dem Automatic Control Laboratory unterstützt. Es

stellt eine umfangreiche Plattform für unbemannte Flugroboter zur Verfügung. Zusätzlich

zum genannten Autopiloten und der Bodenkontrollstation bietet das Projekt das bereits

eingeführte Kommunikationsprotokoll namens MAVLink für Flugroboter aller Art an.

Derzeit wird das Dronecode Project weltweit von namhaften Entwicklungs-, Forschungs-

und Industriepartnern unterstützt und getragen.

PX4 unterstützt sowohl die SITL-Simulation, bei der der Flightstack auf einem Computer

(entweder auf demselben Computer oder einem anderen Computer im selben Netzwerk)

ausgeführt wird, als auch die Hardware in the Loop (HIL) Simulation unter Verwendung

einer Simulationsfirmware auf einer realen Flugcontroller-Tafel. In dieser Arbeit wird die

SIL-Simulation beschrieben. Die Simulatoren wie Gazebo, jMAVSim und AirSim sind mit

PX4 für die SIL-Simulation kompatibel. Von diesen unterstützen Gazebo und jMAVSim

die Multifahrzeugsimulation. Wie oben beschrieben, dient für diese Arbeit Gazebo als

Simulator.

Der Autopilot PX4 besteht aus zwei Hauptschichten: Der Flightstack ist ein Estimation-

und Flight-Control-System, und die Middleware ist eine allgemeine Robotikschicht, die

autonome Roboter jede Art unterstützen kann und interne/externe Kommunikation sowie

Hardware-Integration bietet. Das Diagramm in Abbildung 3.11 bietet einen detaillierten

Überblick über die Bausteine von PX4. Der obere Teil des Diagramms stellt Middleware-

Blöcke dar, während der untere Teil die Komponenten des Flightstacks zeigt. Die Pfeile

repräsentieren den Informationsfluss zwischen den Modulen. In der Realität gibt es viel

mehr Verbindungen als gezeigt, und auf einige Daten (z. B. für Parameter) greifen die

meisten Module zu. Module kommunizieren miteinander über einen Publish-Subscribe-

20

3.3 SOFTWARE IN THE LOOP

Nachrichtenbus mit dem Namen uORB. Die Verwendung des Publish-Subscribe-Schemas

bedeutet erstens, dass das System reaktiv ist (also aktualisiert wird, wenn neue Daten

verfügbar sind), zweitens, dass alle Operationen und die Kommunikation vollständig par-

allel ablaufen, und drittens, dass eine Systemkomponente Daten von überall auf thread-

sichere Weise verarbeiten kann.

Die Middleware besteht im Wesentlichen aus Gerätetreibern für eingebettete Sensoren,

der Kommunikation mit der Außenwelt (Begleitcomputer, GCS usw.) und dem UORB-

Publish-Subscribe-Nachrichtenbus. Darüber hinaus enthält die Middleware eine Simulati-

onsschicht, mit der der PX4-Flugcode auf einem Desktop-Betriebssystem ausgeführt und

eine computermodellierte Drohne in einer simulierten Umgebung gesteuert werden kann.

Da die Module auf Nachrichtenaktualisierungen warten, definieren die Treiber normaler-

weise, wie schnell ein Modul aktualisiert wird. Die meisten IMU-Treiber testen die Daten

mit einer Frequenz von 1 kHz, integrieren sie und veröffentlichen sie mit 250 Hz. Andere

Teile des Systems, wie der Navigator, benötigen keine so hohe Aktualisierungsrate und

laufen daher erheblich langsamer.

Der Flightstack ist eine Sammlung von Leit-, Navigations- und Steuerungsalgorithmen

für autonome Drohnen. Er enthält Steuerungen für Starrflügel-, Multirotor- und VTOL-

Flugzeugzellen sowie Schätzer für Fluglage und Position. Abbildung 3.10 zeigt eine

Übersicht über die Bausteine des Flightstacks. Das Diagramm zeigt die gesamte Pipe-

line von Sensoren, RC-Eingang und autonomer Flugsteuerung (Navigator) bis hin zur

Motor- oder Servosteuerung (Aktuatoren).

Abbildung 3.10: Flightstack

Ein Estimator nimmt eine oder mehrere Sensoreingaben und berechnet daraus einen Fahr-

zeugzustand (zum Beispiel anhand der IMU-Sensordaten). Eine Steuerung (Position Con-

troller) ist eine Komponente, die einen Sollwert und eine Messung oder einen geschätzten

Zustand (Prozessvariable) als Eingabe verwendet. Ziel ist es, den Wert der Prozessvaria-

blen so anzupassen, dass er dem Sollwert entspricht. Der Output ist eine Korrektur, um

diesen Sollwert schließlich zu erreichen. Beispielsweise nimmt der Positionsregler Positions-

21

3 SOFTWAREGRUNDLAGEN

sollwerte als Eingaben an, die Prozessvariable ist die geschätzte aktuelle Position, und die

Ausgabe ist ein Lager- und Schubsollwert, der das Fahrzeug in Richtung der gewünschten

Position bewegt. Ein Mixer nimmt Kraftbefehle entgegen (z. B. rechts abbiegen) und

übersetzt sie in einzelne Motorbefehle, wobei sichergestellt wird, dass bestimmte Grenz-

werte nicht überschritten werden. Diese Übersetzung ist spezifisch für jeden Fahrzeugtyp

und hängt von verschiedenen Faktoren ab, wie z. B. den Motoranordnungen in Bezug auf

den Schwerpunkt oder der Rotationsträgheit der Drohne.

3.3.3 Simulation

Alle Simulatoren kommunizieren mit PX4 über die Simulator-MAVLink-API. Diese API

definiert eine Reihe von MAVLink-Nachrichten, die Sensordaten aus der simulierten Welt

an PX4 liefern und Motor- und Aktorwerte aus dem Flugcode zurückgeben, der auf das

simulierte Flugzeug angewendet wird. Abbildung 3.12 zeigt den Nachrichtenfluss in einer

typischen SIL-Simulationsumgebung für einen der unterstützten Simulatoren.

Die verschiedenen Teile des Systems stellen UDP-Verbindungen her und können ent-

weder auf demselben Computer oder auf einem anderen Computer im selben Netz-

werk ausgeführt werden. Standardmäßig verwendet PX4 UDP-Ports für die MAVLink-

Kommunikation mit Bodenkontrollstationen (z. B. QGroundControl), Offboard-APIs (z.

B. MAVSDK, MAVROS) und Simulator-APIs (z. B. Gazebo). PX4 verwendet das norma-

le MAVLink-Modul, um eine Verbindung zu Bodenstationen (die Port 14550 überwachen)

und externen Entwickler-APIs wie MAVSDK oder ROS (die Port 14540 überwachen) her-

zustellen. Der lokale TCP-Port 4560 des Simulators wird für die Kommunikation mit PX4

verwendet. Die Simulatoren tauschen dann mithilfe der oben beschriebenen Simulator-

MAVLink-API Informationen mit PX4 aus.

3.4 OctoMap

Die im Rahmen dieser Arbeit verwendete OctoMap-Bibliothek wurde von Kai M.

Wurm und Armin Hornung an der Universität Freiburg im Jahr 2013 entwickelt und

wird derzeit von Armin Hornung gepflegt. Die OctoMap-Bibliothek implementiert einen

3D-Belegungsgitter-Mapping-Ansatz, der Datenstrukturen und Mapping-Algorithmen in

C++ bereitstellt, die besonders für die Robotik geeignet sind. Die Kartenimplementierung

basiert auf einem Octree. Ein Octree ist eine hierarchische Datenstruktur für dreidimensio-

nale räumliche Unterteilung. Jeder Knoten in einem Octree repräsentiert den enthaltenen

Raum in einem kubischen Volumen, normalerweise als Voxel bezeichnet. Dieser Band wird

22

3.4 OCTOMAP

Abbildung 3.11: PX4 Architektur [39]

23

3 SOFTWAREGRUNDLAGEN

Abbildung 3.12: Simulator Nachrichtenfluss [39]

Abbildung 3.13: Software in the Loop Architektur [40]

rekursiv in acht Teilbände unterteilt, bis eine gegebene minimale Voxelgröße erreicht wird.

Abbildung 3.14 stellt das Volumenmodell links und den entsprechenden Baum rechts dar-

gestellt. Die minimale Voxelgröße bestimmt die Auflösung des Octree. Da ein Octree eine

hierarchische Datenstruktur ist, kann der Baum auf jeder Ebene beschnitten werden, um

eine gröbere Unterteilung zu erhalten, wenn die inneren Knoten entsprechend gepflegt

werden. In Abbildung 3.15 werden besetzte Voxel in Auflösungen von 0,08 Metern, 0,64

Metern und 1,28 Metern angezeigt [5].

In ihrer einfachsten Form können Octrees die boolesche Eigenschaft modellieren, um die

Belegung eines Volumens zu kartieren. Wenn ein bestimmtes Volumen als besetzt gemes-

24

3.4 OCTOMAP

Abbildung 3.14: Octree

Abbildung 3.15: Octree-Auflösung [5]

sen wird, wird der entsprechende Knoten im Octree initialisiert. In der OctoMap werden

Sensorablesungen mithilfe der von Moravec und Elfes eingeführten Belegungsgitterkar-

tierung integriert [41]. Die Wahrscheinlichkeit P �n ¶ z1�t� eines Knotens n, der bei den

Sensormessungen z1�t besetzt werden soll, ist wie folgt definiert:

P �n ¶ z1�t� � �1 �
1 � P �n ¶ zt�
P �n ¶ zt� 1 � P �n ¶ z1�t�1�

P �n ¶ z1�t�1� P �n�
1 � P �n��

�1

(3.1)

Diese Aktualisierungsformel hängt von der aktuellen Messung zt, einer vorherigen Wahr-

scheinlichkeit P �n� und der vorherigen Schätzung P �n ¶ z1�t�1� ab. Der Term P �n ¶ zt�
bezeichnet die Wahrscheinlichkeit, dass Voxel n bei der Messung zt besetzt wird. Dieser

Wert ist spezifisch für den Sensor, der zt erzeugt hat. Die übliche Annahme einer ein-

heitlichen vorherigen Wahrscheinlichkeit führt zu P �n� � 0, 5 und unter Verwendung der

Log-Odds-Notation kann die Gleichung 6.1 umgeschrieben werden:

25

3 SOFTWAREGRUNDLAGEN

L�n ¶ z1�t� � L�n ¶ z1�t�1� � L�n ¶ zt�, L�n� � log � P �n�
1 � P �n�� (3.2)

Diese Formulierung der Aktualisierungsregel ermöglicht schnellere Aktualisierungen, da

die Multiplikation durch eine Addition ersetzt wird. Bei vorberechneten Sensormodel-

len müssen die Logarithmen während des Aktualisierungsschritts nicht berechnet wer-

den. Jeder nicht initialisierte Knoten kann frei sein oder unbekannt in dieser booleschen

Einstellung. Um diese Mehrdeutigkeit zu beheben, werden die freie Volumen im Baum

dargestellt. Diese werden im Bereich zwischen dem Sensor und dem gemessenen erstellt

Endpunkt, z. B. entlang eines mit Raycasting bestimmten Strahls. Bereiche die nicht in-

itialisiert sind, werden als implizit unbekannter Raum modelliert. Abbildung 3.16 zeigt

die Illustration eines Octrees, der freie und besetzte Knoten aus realen Lasersensorda-

ten enthält (Links: Pointclouds, aufgenommen in einem Korridor mit einem kippbaren

Laser-Entfernungsmesser. Mitte: Aus den Daten generierter Octree, der nur belegte Voxel

anzeigt. Rechts: Visualisierung des Octree mit besetzten Voxeln (dunkel) und freien Vo-

xeln (weiß). Die freien Bereiche werden erhalten, indem der Raum auf einem Strahl vom

Sensorursprung zu jedem Endpunkt freigegeben wird. Verlustfreies Beschneiden führt zu

Blattknoten unterschiedlicher Größe, die vor allem in den freien Bereichen rechts sichtbar

sind). Die boolesche Belegungszustände oder diskrete Beschriftungen ermöglichen eine

kompakte Darstellung des Octree. Wenn alle Kinder (Unterknoten) eines Knotens den

gleichen Zustand haben (besetzt oder frei), können sie weggeschnitten werden. Dies führt

zu einer wesentlichen Verringerung der Anzahl der Knoten, die im Baum gepflegt werden

müssen.

Abbildung 3.16: OctoMap-Auflösung[5]

Zusammenfassend lassen sich für die OctoMap-Bibliothek im Wesentlichen folgende Vor-

teile gegenüber anderen Map-Bibliotheken wie Pointclouds und Elevationmap festhalten:

v Vollständiges 3D-Modell: Die Karte kann beliebige Umgebungen ohne vorherige An-

nahmen modellieren. Die Darstellung modelliert belegte Raum sowie freien Raum.

26

3.5 FCL

Unbekannte Bereiche der Umgebung werden implizit in der Karte codiert. Da die

Unterscheidung zwischen freiem und besetztem Raum für eine sichere Roboterna-

vigation wesentlich ist, sind Informationen über unbekannte Bereiche von entschei-

dender Bedeutung z. B. für die autonome Erkundung einer Umgebung.

v Aktualisierbar: Es ist jederzeit möglich, neue Informationen oder Sensorwerte hin-

zuzufügen. Das Modellieren und Aktualisieren erfolgt auf probabilistische Weise.

Dies erklärt Sensorrauschen oder Messungen, die aus dynamischen Veränderungen

der Umgebung resultieren, z. B. aufgrund dynamischer Objekte. Darüber hinaus

können mehrere Roboter zu einer Karte beitragen, und eine zuvor aufgezeichnete

Karte kann um neu erkundete Gebiete erweitert werden.

v Flexibilität: Der Umfang der Karte muss nicht im Voraus bekannt sein. Statt-

dessen wird die Karte nach Bedarf dynamisch erweitert. Die Karte hat mehrere

Auflösungen, so dass beispielsweise ein Planer auf hoher Ebene eine grobe Kar-

te verwenden kann, während ein lokaler Planer möglicherweise mit einer feinen

Auflösung arbeitet. Dies ermöglicht auch effiziente Visualisierungen, die von gro-

ben Übersichten bis hin zu detaillierten Nahansichten skalieren.

v Kompaktheit: Die Karte wird sowohl im Speicher als auch auf der Festplatte effizi-

ent gespeichert. Es ist möglich, komprimierte Dateien für die spätere Verwendung

oder den bequemen Austausch zwischen Robotern bei beschränkter Bandbreite zu

generieren [5].

3.5 FCL

Eine der Hauptaufgaben bei der Pfadplanung für mehrere Drohnen besteht in der Er-

kennung drohender Kollisionen. Für diese Aufgabe wurde die Flexible Collision Libra-

ry entwickelt und im Jahr 2012 bei Jia Pan vorgestellt. Aus Anwendungssicht ist die

FCL darauf ausgelegt, einheitliche und erweiterbare Schnittstellen für Kollisionen und

Näherungsberechnungsalgorithmen bereitzustellen. Konzipiert wurde sie darüber hinaus

zur Unterstützung verschiedener Datendarstellungen, einschließlich Dreiecksgitter und be-

kannter Formprimitive (z. B. Kugel, Zylinder). Um diese Ziele zu erreichen, modelliert

die FCL alle Kollisionen und Annäherungsabfragen zwischen zwei Objekten als Abfrage-

prozess entlang einer hierarchischen Struktur. Wie Abbildung 3.17 zeigt, wird der FCl-

Abfrageprozess in drei Schritten ausgeführt [6].

v Objektdarstellung: Objekte werden durch eine hierarchische, für spezifische Ab-

fragen geeignete Struktur dargestellt. So werden etwa geometrische Grundformen

(z. B. Kegel, Zylinder, Kugeln) von Knoten ersetzt, die einstufige Hierarchie mit

27

3 SOFTWAREGRUNDLAGEN

Abbildung 3.17: FCL-Architektur [6]

der entsprechenden Begrenzung sind. Beliebige geometrische Objekte werden un-

ter Verwendung einer Begrenzungsvolumenhierarchie dargestellt. Die hierarchische

Struktur und die Konfiguration des Objekts werden in einer Struktur namens Col-

lisionObject erstellt, das auch die Formdarstellung verformbarer Modelle aus dem

vorherigen Zeitschritt enthält.

v Die Initialisierung des Abfrageknotens: Im Abfrageknoten werden die vollständigen

Informationen, die für eine bestimmte Abfrage erforderlich sind, gespeichert. Die

Informationen unterscheiden sich von verschiedenen Objektdarstellungen. Für eine

kontinuierliche Kollisionsabfrage müssen z. B. die Objektkonfiguration und Form-

darstellung für den vorherigen Zeitrahmen gespeichert werden. Außerdem kann der

Abfrageknoten die Strategie der Abfrage entscheiden. Erfordert beispielsweise der

Knoten nur eine Ja-Nein-Antwort erfordert, stoppt die Kollisionsabfrage, sobald ei-

ne Kollision gefunden wurde. Eine solche vorzeitig beendete Strategie ist auf Tren-

nungsabstandsabfragen nicht anwendbar.

v Hierarchieabfragen: Nach der Initialisierung des Abfrageknotens wird die Abfra-

ge die hierarchische Struktur durchlaufen, um eine bestimmte Kollisions- oder

Näherungsobjekte zu finden.

In Abbildung 3.17 zur FCL-Architektur repräsentieren die schwarzen Pfeile die Daten-

flüsse, einschließlich Aufbau der hierarchischen Struktur für jedes Objekt und Kollisions-

manager für mehrere Objekte. Die roten Pfeile stehen für Algorithmusfluss, einschließlich

Vorbereitung des Abfrageknotens und hierarchischer Abfrage. Die Kollisionsabfragen für

artikulierte Körper oder Umgebungen mit mehreren beweglichen/verformbaren Objekten

28

3.6 CPLEX

müssen effizient ausgeführt werden. In der FCL geschieht dies durch den Kollisionsmana-

ger, der den SaP für die Kollisionserkennung mit N-Körpern Algorithmus verwendet zur

Behandlung solcher Szenarien für verschiedene Abfragen.

3.6 Cplex

Da diese Arbeit sich mit dem MAPF-Problem befasst, geht es um die Pfadplanung für jede

Drohne zur Vermeidung von Kollisionen. In die Planung müssen außerdem zusätzliche Ein-

schränkungen einbezogen werden, z. B. Hindernisse, die Raumbegrenzung, die Geschwin-

digkeit, die Kapazität der Batterie, Ausgangspunkt und Endpunkt usw. Das MAPF-

Problem kann in eine quadratische Programmierung (QP) umgewandelt werden. Zur Ver-

besserung der Recheneffizienz der QP wird für diese Arbeit das IBM ILOG CPLEX Opti-

mization Studio verwendet (meist schlicht bezeichnet als CPLEX). Es handelt sich dabei

um ein Programmsystem zur Modellierung und Lösung von Optimierungsproblemen mit-

hilfe mathematischer Optimierung sowie der Constraint-Programmierung. CPLEX wurde

1987 von Robert Bixby als Implementierung des Simplex-Verfahrens zur Lösung linearer

Optimierungsprobleme in der Programmiersprache C entwickelt. Es wurde erstmals im

Jahr 1988 durch die von Bixby und Janet Lowe gegründete CPLEX Optimization Inc.

kommerziell vertrieben und weiterentwickelt. Als einer der Marktführer im Bereich Opera-

tions Research wurde die CPLEX Optimization Inc. im Jahr 1997 durch ILOG aufgekauft.

Neben einem kommandozeilen-basierten Solver stellt CPLEX auch die Modellierungsspra-

che OPL und umfangreiche Bibliotheken mit Anbindung an die Programmiersprachen C,

C++, Java und Python bereit. CPLEX Optimizer bietet flexible, leistungsfähige Solver

für die mathematische Programmierung, die lineare Programmierung, die gemischt ganz-

zahlige Programmierung, die quadratische Programmierung und quadratisch beschränkte

Programmierungsprobleme. Die Solver zeichnen sich durch einen verteilten parallelen Al-

gorithmus für gemischt ganzzahlige Programmierung aus, um für die Lösung schwieriger

Probleme mehrere Computer nutzen zu können.

Wie bereits erwähnt, ist die quadratische Programmierung ein Modell, in dem die Ein-

schränkungen linearer Art sind, die Zielfunktion aber einen oder mehrere quadratische

Terme enthalten kann. Wenn solche Probleme konvex sind, löst CPLEX sie normalerweise

effizient in Polynomzeit. Nicht-konvexe QP sind jedoch ziemlich hart. Theoretisch werden

sie als NP-hart charakterisiert. CPLEX wendet verschiedene Ansätze auf diese Probleme

an, beispielsweise Ansätze Barriere-Algorithmen oder Verzweigungs- und gebundene Al-

gorithmen. Insbesondere in der Branche und gebunden Ansatz gibt es keine theoretische

Garantie für die Komplexität eines solchen Problems. Folglich kann die Lösung dieses

29

3 SOFTWAREGRUNDLAGEN

Problems nichtkonvexer QP mehr Rechnenzeit erfordern als die Lösung einer konvexen

QP von vergleichbarem Wert.

30

4 Algorithmen

In diesem Kapitel werden verschiedene Algorithmen für die Pfadplanung und Trajek-

torienverarbeitung im Rahmen der Arbeit erläutert. Zuerst werden in einer Übersicht

verschiedene Algorithmen für dreidimensionale Routenplanung zusammengefasst. Dann

werden die in dieser Arbeit verwendeten Algorithmen zur Routenplanung vorgestellt,

nämlich RRT, RRT*, CBS und A*. Am Ende des Kapitels wird ein Algorithmus namens

Bernsteinpolynom zur Trajektorienverarbeitung eingeführt.

4.1 Übersicht der Algorithmen von Routen plannung

Algorithmen für die 3D-Pfadplanung sind seit dem letzten Jahrhundert entstanden. Inzwi-

schen gibt es viele Methoden dreidimensionaler Routenplanung, angewendet für verschie-

dene Roboter und Umgebungen. z. B. Rapidly-exploring random tree (RRT), Probabilistic

Road Maps (PRM), künstliches Potenzialfeld und Mixed-Integer-Programmierung. Ent-

sprechend ihrer Eigenschaften lassen sich die Algorithmen in fünf Kategorien einordnen,

wie in Abbildung 4.1 dargestellt [42].

Abbildung 4.1: Klassifizierung von Pfadplanung

Stichprobenbasierte Algorithmen (Englisch: Sampling-based algorithms) benötigen einige

bekannte Umweltinformationen in der mathematische Darstellung, um den Arbeitsbereich

zu beschreiben. Diese Methode tastet die Umgebung normalerweise als Reihe von Knoten

oder Zellen oder in anderen Formen ab. Dann werden die Stichprobeknoten mit den

einschränkenden Faktoren kombiniert oder einfach nach dem Zufallsprinzip gesucht, um

31

4 ALGORITHMEN

einen realisierbaren Pfad zu erhalten. Die Elemente stichprobenbasierter Algorithmen sind

in Abbildung 4.2 dargestellt.

Abbildung 4.2: Stichprobenbasierte Algorithmen

Das Diagramm unterteilt die stichprobenbasierten Algorithmen in zwei Gruppen: aktiv

und passiv. Aktiv umfasst Algorithmus wie RRT, die den machbaren Pfad zum Ziel durch

ihr eigenes Verarbeitungsverfahren erreichen können. Passiv bedeutet Algorithmen wie

PRM, die nur ein Straßennetz vom Start bis zum Ziel erzeugen, das viele mögliche Pfade

enthält. Nach Kombination von Suchalgorithmen wird der bestmögliche Pfad gefunden.

Algorithmen, die nicht selbständig den besten Pfad finden können (d. h. abhängig von

anderen Algorithmen sind), werden als passiv klassifiziert.

Knotenbasierte optimale Algorithmen(Englisch: node-based optimal algorithms) teilen die

Eigenschaft Stichprobenbasierter Algorithmen, die unter einer Reihe von Knoten (Zelle)

in der Karte untersuchen. Allerdings wird hier die Karte mit einer zerlegten Grafik er-

setzt. Deshalb kann diese Methode immer einen optimalen Weg finden. Abbildung 4.3

zeigt die typischen Elemente knotenbasierter optimaler Algorithmen. LPA* ist dabei der

Algorithmus für lebenslange Planung A*, eine sich wiederholende Version von A* (d.

h. mit der Fähigkeit, mit dynamischen Bedrohungen umzugehen). Basierend auf LPA*

wird D* vorgeschlagen, das sich mit dynamischen Bedrohungssituationen befasst. Die

Dijkstra-Algorithmen A* und D* werden traditionell als diskrete optimale Planung oder

Straßenkartenalgorithmen klassifiziert.

Auf mathematischen Modellen basierende Algorithmen umfassen lineare Algorithmen

und optimale Steuerung. Diese Methoden modellieren die Umgebung (kinematische Ein-

schränkungen) sowie das System (dynamisch) und die Kostenfunktion, die mit den ki-

32

4.1 ÜBERSICHT DER ALGORITHMEN VON ROUTEN PLANNUNG

Abbildung 4.3: Knotenbasierte Algorithmen

nematischen und dynamischen Beschränkungsgrenzen verbunden ist, um eine optimale

Lösung zu erreichen. Die Elemente auf mathematischen Modellen basierender Algorith-

men werden in Abbildung 4.4 vorgestellt.

Abbildung 4.4: Auf mathematischen Modellen basierende Algorithmen

Dabei verwendet die auf Ebenheit basierende Methode, die zuerst von Chamseddine vor-

geschlagen wurde, verschiedene Ebenheit und die Linerarisierung der nichtlinearen kino-

dynamischen Zwänge, um die Kontrollebenheit entlang des Referenzpfades sicherzustellen.

Die Mixed-Integer-lineare-Programmierung (MILP) zeichnet sich durch eine starke Mo-

33

4 ALGORITHMEN

dellierungsfähigkeit aus. Die binär-lineare Programmierung (BIP) ist ein Sonderfall der

linearen Programmierung, wobei die Variablen nur einen ganzzahligen Wert Null oder

Eins haben.

Bioinspirierte Algorithmen stammen aus der Nachahmung biologischer Verhaltensweisen

zur Lösung von Problemen. Diese Planungsmethoden lassen den Prozess des Aufbaus einer

komplexen Umgebung aus und überwinden die Schwäche der auf mathematischen Model-

len basierenden Algorithmen, die bei der Lösung von NP-harten Problemen mit großer

Anzahl von Variablen und nichtlinearen Zielfunktionen häufig fehlschlagen. Abbildung 4.5

präsentiert eine Reihe typischer aktueller Methoden.

Abbildung 4.5: Bioinspiriert Algorithmen

Dabei ist der genetische Algorithmus (GA) auch die bekannteste populationsbasierte

numerische Optimierungsmethode. Der memetische Algorithmus (MA) ist ein popula-

tionsbasierter heuristischer Explorationsansatz für kombinatorische Optimierungsproble-

me. Die Partikelschwarmoptimierung (PSO) ist ein populationsbasierter stochastischer

Optimierungsalgorithmus, und die Ameisenkolonie-Optimierung (ACO) ahmt das Ver-

halten der Ameise beim Finden des kürzesten Weges mit Pheromoninformation nach. Der

Leapfrog-Algorithmus (Englisch: shuffled frog-leaping algorithm (SFLA)) ist eine Kombi-

nation von MA und PSO ist. Bei bioinspirierten Algorithmen wird zwischen dem Evolutio-

nary Algorithm (EA) und dem neuronalen Netz (NN) unterschieden, die auf verschiedenen

Ebenen analysiert werden.

Multifusion ist ein in jüngster Zeit entstehender Ansatz zur Verbesserung der Leistung

von 3D-Pfad-Planungsalgorithmen. Die Algorithmen lassen sich miteinander kombinieren,

um einen optimalen Weg zu planen (bessere Echtzeit oder optimale Leistung). Künstliche

Potenzialfeldalgorithmen fallen z. B. normalerweise hinein lokale Minima ohne Naviga-

34

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

tionsfunktion oder andere Tricks. Probabilistische Straßenkarten können keine optimale

Lösung erzeugen. Eine Kombination beider Algorithmen könnte die Nachteile beseitigen.

4.2 Routenplanungsalgorithmen in dieser Arbeit

Wie oben beschrieben, gibt es viele Algorithmen, die auf verschiedenen Grundprinzipien

beruhen und je eigene Vor- und Nachteile aufweisen. In dieser Arbeit werden die Algo-

rithmen RRT, CBS (conflict-based search) und A* zur Pfadplanung in drei Dimensionen

genutzt. Im Folgenden werden deren Grundlagen und Eigenschaften erklärt.

4.2.1 RRT, RRT* und informierter RRT*

Der RRT Algorothmus wurde von LaValle vorgeschlagen [43]. Er versucht, die Probleme

der Pfadplanung unter holonomen, nichtholonomen und kinodynamischen Bedingungen

zu lösen. Der RRT durchsucht den Konfigurationsraum schnell, um einen Baum zu ge-

nerieren, der Start- und Zielknoten verbindet. In jedem Schritt wird ein neuer Knoten

abgetastet. Wenn die Erweiterung vom abgetasteten zum nächsten Knoten erfolgreich ist,

wird dem Baum ein neuer Knoten hinzugefügt. Bei Anwendung dieser Methode in einer

3D-Umgebung, wird normalerweise davon ausgegangen, dass ein 3D-Konfigurationsraum

χ � C vorhanden ist. Der Konfigurationsraum besteht aus zwei Teilen: einem festen Hin-

dernisbereich χobs L χ, der vermieden werden muss, und einem hindernisfreien Bereich

χfree L χ, in dem sich die Roboter aufhalten müssen. Entsprechend des Konfigurations-

raums enthält ein Pfadzustands-(oder Scheitelpunkt-) Satz P alle Abtastscheitelpunkte,

die durch den RRT-Explorationsprozess erzeugt werden. Um den Algorithmus zu imple-

mentieren, müssen die folgenden Schritte befolgt werden (siehe in Abbildung 4.6). Die

Cyan-Kreise stellen Hindernisregionen dar, die nicht passiert werden können. γ ist die

maximale Schrittverlängerungslänge gemäß den angegebenen Einschränkungen und Ko-

stenfunktionen.

v Schritt 1: Zuerst gibt es den Anfangszustand χinit " χfree in P als ersten Punkt.

Dann wird ein Punkt zufällig in χfree frei gewählt. Abbildung 4.6 zeigt zwei

Zustände, die xrandom1 und xrandom2.

v Schritt 2: Dann wird ein Folgezustand, der auf dem neu erzeugten Zustand xrandom

in P basiert und einen festen Abstand zu diesem hat, ausgewählt. Der Punkt xnear

wird als Elternzustand von xrandom betrachtet.

v Schritt 3: xrandom ist der Zustand, der die Richtung angibt, in die der nächste Punkt

gehen soll. Unter der Berücksichtigung der kinodynamischen Einschränkungen wird

35

4 ALGORITHMEN

ein Regelungsfaktor in einer Kostenfunktion φ � f�x, y, z� hinzugefügt. Gemäß den

Einschränkungen r und der Kostenfunktion φ wird der erreichbare Zustand xnew

erstellt. Eine Prüfung ermittelt, ob xnew frei ist. Wenn es sich in χfree befindet, wird

es dem Pfad P hinzufügt. Andernfalls wird es weggelassen.

Abbildung 4.6: RRT

In Abbildung 4.6 liegt, der Punkt xnew1 im Hindernis. Deshalb ist die Richtung nach

xrandom1 ungültig. Die Zustände xrandom1 und xnew1 werden gelöscht. Dann wird durch

Wiederholung von Schritt 2 ein neuer Punkt xrandom2 generiert. Nach Wiederholung von

Schritt 3 wird der Punkt xnew2 als gültiger Punkt gesetzt. Der RRT Algorithmus ist

36

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

folgendermaßen konstruiert:

Algorithm 1: RRT

Input: RRT �zinit�
Output: T � �V,E�

1 T � InitializeTree��;
2 T � InsertNode�o, zinit, T �;
3 for i � 0 to i � N do

4 zrand � Sample�i�;
5 znearest � Nearest�T, zrand�;
6 �znew,Unew

�� Steer�znearest, zrand�;
7 if Obstaclefree�znew� then

8 T � InsertNode �zmin, znew, T �;
9 end

10 end

11 return T ;

Nach Einführung in die Literatur wurden theoretische Grundlagen des RRT-Algorithmus

vorgestellt, darunter die probabilistische Vollständigkeit [44] und die exponentielle Zer-

fallsrate der Ausfallwahrscheinlichkeit [45]. Insbesondere wurde gezeigt, dass der RRT-

Algorithmus für Systeme mit verschiedenen Beschränkungen, nichtlinear Dynamik und

nichtholonomer Zwänge sowie für rein diskrete oder hybride Systeme effektiv funktioniert.

Zudem hat sich der RRT-Algorithmus auf verschiedenen experimentellen Roboterplatt-

formen bewährt.

Während der RRT-Algorithmus in der Praxis gut funktioniert und die Vollständigkeit der

Lösung garantieren kann, besteht das Problem, dass RRT Monte-Carlo-Zufallsstichproben

nutzt, die jedoch kaum auf die Qualität der Ergebnisse achten. Es ist erwiesen, dass RRT-

Algorithmen nicht asymptotisch optimal sind. Die Methode benötigt viel Zeit, um in

überfüllten Umgebungen Auswege zu finden. Abbildungen 4.7, 4.8 und 4.9 zeigen RRT-

Simulationen. Darin zeigt sich, dass die Erweiterung des RRT-Algorithmusbaums nicht

optimal, völlig zufällig und ungerichtet ist. Wenn die Pfadplanung in einer komplexen

Umgebung mit dichten Hindernissen oder engen Kanälen durchgeführt wird, erhöht sich

die Berechnungszeit des Algorithmus erheblich, und der Algorithmusbaum weist mit zu-

nehmender Pfadlänge eine große Redundanz auf. Abbildungen 4.8 und 4.9 zeigen, dass

der gültige Pfad von Anfang bis Ende durch einen engen Korridor gehen muss. Nur wenn

die Zufallsstichproben in engen Korridoren liegen, kann dar RRT-Baum effektiv erweitert

werden.

Um die Qualität der Ergebnisse zu erhöhen, wird der erweiterte RRT-Algorithmus vor-

37

4 ALGORITHMEN

Abbildung 4.7: RRT Simulation [7]

Abbildung 4.8: RRT Simulation [7]

gestellt, der als RRT*-Algorithmus bezeichnet wird und eine signifikante Verbesserung

der Präzision der RRT erreicht. Es wird gezeigt, dass RRT* eine asymptotisch subop-

timale Lösung liefert. Zum Unterschied von RRT werden die wahrscheinliche schlech-

te Verbindungen im RRT*-Baum entfernt. Dadurch werden die Lösungen so optimiert,

dass sie kostengünstiger als RRT sind. RRT* erbt alle Eigenschaften von RRT und

funktioniert ähnlich wie RRT. Es wurden jedoch zwei optimierte Funktionen eingeführt,

die als Nahe-Nachbar-Operationen(Englisch: near neighbor search) und Neuverbindung-

Operation (Englisch: rewire) bezeichnet werden. Die Nahe-Nachbar-Operation findet den

besten Elternknoten für den neuen Knoten, bevor sie in den Baum eingefügt wird. Die-

ser Vorgang wird im Bereich einer Kugel mit dem Radius (R) durchgeführt. Durch die

Neuverbindung-Operation wird der Baum innerhalb dieses Radius des Bereichs k neu

38

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

Abbildung 4.9: RRT Simulation [7]

erstellt, um die Kosten zwischen den Baumverbindungen zu minimieren [46][47].

Wenn mit dem Baum ein zufälliger Knoten hinzugefügt wird, wählt der RRT den nächsten

Nachbarn als Elternknoten für diesen neuen Knoten aus. RRT* aber wählt den besten

Nachbarn als Elternknoten für den neuen Knoten aus. Beim Finden des nächsten Nach-

barn berücksichtigt RRT* alle Knoten innerhalb einer Nachbarschaft der Zufallsstichpro-

be. Hier wird die Kostenfunktion (p) definiert, um die Kosten des eindeutigen Pfades von

Xinit zu einem beliebigen Zustand p " P darzustellen. Zur Initialisierung wird der Wert

von Kosten(Xinit) auf null gesetzt. RRT* ermittelt dann die Kosten für die Verbindung zu

jedem dieser Knoten. Der Knoten mit den niedrigsten Verbindungskosten zum Erreichen

der Zufallsstichprobe wird als Elternknoten ausgewählt und dem Baum hinzugefügt [48].

Der RRT*-Algorithmus beginnt auf die gleiche Weise wie der RRT-Algorithmus. Bei der

Auswahl des nächsten Nachbarn wählt der Algorithmus jedoch auch Knoten Qnear im

Baum aus, die sich in der Nähe der Zufallsstichproben- qrand befinden. Zeile 6 des Algo-

rithmus 2 ist der erste Hauptunterschied zwischen RRT* und RRT. Anstatt den nächsten

Nachbarn zur Zufallsstichprobe auszuwählen, wählt die Funktion ChooseParent() den be-

39

4 ALGORITHMEN

sten Elternknoten aus der Nachbarschaft der Knoten aus [46].

Algorithm 2: RRT*

Input: �qinit�
Output: T � �V,E�

1 T � InitializeTree��;
2 T � InsertNode�o, qinit, T �;
3 for k � 1 to N do

4 qrand � RandomSample�k�;
5 qnearest � NearestNeighbor�qrand, Qnear

, T �;
6 qmin � ChooseParent�qrand, Qnear

, qnearest,^q�;
7 T � InsertNode�qmin, qrand, T �;
8 T � Rewire�T,Qnear, qmin, qrand�;
9 end

10 return T ;

Algorithmus 3 beschreibt die Funktion ChooseParent(). Diese Funktion verwaltet den

Knoten mit den niedrigsten Gesamtkosten für das Erreichen von qrand. In Zeile 1 von

Algorithmus 3 wird der nächste Nachbar, qnearest, als der Nachbar mit den niedrigsten

Kosten qmin betrachtet. In Zeile 2 werden die Kosten, die mit dem Erreichen der neuen

Zufallsstichprobe qrand unter Verwendung von qnearest als Eltern verbunden sind, als die

aktuell niedrigsten Kosten Cmin gespeichert. Der Algorithmus durchsucht dann die Menge

der Knoten in der Nähe von qrand. Die Funktion Steer() in Zeile 4 von Algorithmus 3 gibt

einen Pfad vom nahegelegene Knoten qnear zu qrand zurück. Wenn dieser Pfad frei von

Hindernissen ist und niedrigere Kosten als die aktuellen Mindestkosten hat, wird der nahe

gelegene Knoten zum besten Nachbar, qmin, und diese Kosten werden zu den niedrigsten

Kosten cmin (Zeilen 7–9 von Algorithmus 3). Wenn alle nahegelegenen Knoten untersucht

wurden, gibt die Funktion den besten Nachbarn zurück. Der neue Zufallsknoten wird mit

qmin als Elternknoten in den Baum eingefügt. Der nächste Schritt ist der zweite große

Unterschied zwischen dem RRT*- und dem RRT-Algorithmus. Zeile 8 von Algorithmus 2

40

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

ruft die Funktion Rewire() auf [46].

Algorithm 3: RRT*-ChooseParent

Input: �qrand, Qnear
, qnearest,^q�

Output: qmin

1 qmin � qnearest;

2 cmin � Cost�qnearest� � c�qrand� ;

3 for qnear " Qnear do

4 qpath � Steer�qnear, qrand,^q�;
5 if ObstacleFree�qpath� then

6 cnew � Cost�qnear� � c�qpath�;
7 if cnew $ cmin then

8 cmin � cnew;

9 qmin � qnear;

10 end

11 end

12 end

13 return qmin;

Die in Algorithmus 4 beschriebene Rewire-Funktion ändert die Baumstruktur basierend

auf dem neu eingefügten Knoten qrand. Diese Funktion verwendet wiederum die nahe Nach-

barschaft der Knoten Qnear als Kandidaten für die Neuverbindung. Die Rewire-Funktion

verwendet die Steer -Funktion, um den Pfad abzurufen. Der Pfad beginnt am neuen Kno-

ten qrand und geht zum nahe gelegenen Knoten qnear. Wenn dieser Pfad frei von Hin-

dernissen ist und die Gesamtkosten dieses Pfads niedriger als die aktuellen Kosten für

das Erreichen von qnear sind (Zeile 3 von Algorithmus 3), ist der neue Knoten qrand ein

besserer Elternknoten als der aktuelle Elternknoten von qnear. Der Baum wird dann neu

verkabelt, um die Verbindung zum aktuellen Elternknoten von qnear zu löschen und eine

Verbindung hinzuzufügen, um qrand zum Elternknoten von qnear zu machen. Dies erfolgt

mit der Funktion ReConnect in Zeile 4 von Algorithmus 4. Die Funktionen ChooseParent

und Rewire ändern die Struktur des Suchbaums im Vergleich zum RRT-Algorithmus. Der

vom RRT generierte Baum weist Verzweigungen auf, die sich in alle Richtungen bewegen.

Der vom RRT*-Algorithmus erzeugte Baum weist selten Zweige auf, die sich in Richtung

41

4 ALGORITHMEN

des Elternknoten zurückbewegen [49].

Algorithm 4: RRT*-Rewire

Input: �T,Qnear, qmin, qrand�
Output: T

1 for qnear " Qnear do

2 qpath � Steer�qrand,qnear
�;

3 if ObstacleFree�qpath� and Cost�qrand� � c�qpath� $ Cost�qnear� then

4 T � ReConnect�qrand, qnear, T �
5 end

6 end

7 return T ;

Die Funktion ChooseParent() stellt sicher, dass Pfade erstellt werden und sich immer vom

Startort entfernen [50]. Die Funktion Rewire() ändert die interne Struktur des Baums, um

sicherzustellen, dass interne Knoten keine unnötigen Schritte auf einem erkannten Pfad

hinzufügen. Die Funktionen ChooseParent() und Rewire garantieren, dass die erkannten

Pfade asymptotisch suboptimal sind, da diese Funktionen immer die Kosten minimieren,

um jeden Knoten innerhalb des Baums zu erreichen[46].

Abbildung 4.10 verdeutlicht dies anhand eines Beispiels. Der ursprüngliche RRT-Baum

ähnelt der linken Abbildung. Der gelbe Knoten repräsentiert qrand, der aus den Zufalls-

stichproben generiert wird. Es gibt vier Knoten in der Nähe von qrand als Qnear. Nach

der Kostenberechnung und der Neuverbindung wird die Verbindung zwischen X1 und X2

gelöscht. Die Knoten X2 und qrand sind verbunden.

Abbildung 4.10: RRT*

Abbildung 4.11 zeigt die Simulation von RRT und RRT* mit derselben Umgebung. Beide

Algorithmen wurden mit derselben Probensequenz 20.000 Mal ausgeführt. Die Kosten für

den besten Pfad in der RRT und der RRT* betrugen 21,02 und 14,51 Sekunden. Es ist

42

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

ersichtlich, dass der RRT*-Algorithmus eine asymptotisch suboptimale Lösung erzeugt.

Zwar verbessert RRT* die Ergebnisse gegenüber dem RRT-Algorithmus, aber der RRT*

basiert genau wie RRT auf Zufallsstichproben. Das heißt, dass die Probenahme jeder

Iteration gleichmäßig über die gesamte Umgebung verteilt ist. Wie in der Abbildung 4.11

zu sehen, sind die Probennahmen von RRT und RRT* gleichmäßig auf der Karte verteilt,

anstatt in der Nähe der optimalen Pfade konzentriert zu sein. Probenahmen weit entfernt

vom optimalen Pfad sind meist redundant. Wenn die Umgebung relativ weitläufig ist oder

die Planung in hohen Dimensionen erfolgt, ist RRT* ineffizient.

Abbildung 4.11: RRT und RRT* [8]

Daher wird im Folgenden der informierte RRT* vorgestellt, um die Vorteile der infor-

mierten inkrementellen Suche zu demonstrieren. Der informierte RRT* verhält sich wie

RRT*, bis eine erste Lösung gefunden wird. Danach werden die Stichproben nur aus der

Teilmenge von Zuständen abgetastet, die durch eine zulässige Heuristik definiert sind, um

nach Möglichkeit die Lösung zu verbessern. Diese Teilmenge gleicht implizit die Ausbeu-

tung mit der Exploration aus und erfordert keine zusätzliche Abstimmung (d. H. es gibt

keine zusätzlichen Parameter) oder Annahmen (d. H. alle relevanten Homotopieklassen

werden durchsucht).

Algorithmus 5 ist ein Beispielalgorithmus mit direkter, informierter Abtastung, Informed

RRT*. Es fügt dem zuvor dargestellten RRT*-Algorithmus die Zeilen 3, 6, 7, 30 und 31

hinzu. Wie RRT*, sucht dieser nach dem optimalen Pfad zu einer Planung durch schritt-

weises Erstellen eines Baums im Zustandsraum τ � �V,E�, bestehend aus einer Menge

von Punkten V N Xfree und Kanten E N Xfree�Xfree. Neue Punkte werden hinzugefügt,

indem der Graph im freien Raum in Richtung zufällig ausgewählter Zustände vergrößert

wird. Der Baum wird mit jedem neuen Punkt neu verbunden, sodass die Kosten für die

43

4 ALGORITHMEN

nahegelegenen Punkte minimiert werden. Der Algorithmus unterscheidet sich von RRT*

darin, dass er sich nach dem Finden einer Lösung auf den Teil des Planungsproblems

konzentriert, der die Lösung verbessern kann. Dies geschieht durch direkte Abtastung

der ellipsoiden Heuristik. Sobald Lösungen gefunden wurden (Zeile 30), fügt der infor-

mierte RRT* sie einer Liste möglicher Lösungen hinzu (Zeile 31). Die Lösung der nied-

rigsten Kosten wird verwendet (Zeile 6), um X
rf direkt zu berechnen und abzutasten

(Zeile 7). Wie üblich wird das Minimum einer leeren Liste als unendlich angenommen.

44

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

Algorithm 5: Informierter RRT*

Input: �xstart, xgoal�
Output: τ

1 V � rxstartx;

2 E � o;

3 Xsoln � o;

4 τ � �V,E�;
5 for iteration � 1 to N do

6 cbest � minxsoln"Xsoln
rCost�xsoln�x;

7 xrand � Sample�xstart, xgoal, cbest�;
8 xnearest � Nearest�τ, xrand�;
9 xnew � Steer�xnearest,xrand

�;
10 if CollisionFree�xnearest,xnew

� then

11 V � < rxnewx;

12 Xnear � Near�τ, xnew, rRRT��;
13 xmin � xnearest;

14 cmin � Cost�xmin� � c�Line�xnearest, xnew�;
15 for ¾xnear " Xnear do

16 cnew � Cost�xnear� � c�Line�xnear, xnew�;
17 if cnew $ cmin then

18 if CollisionFree�xnear, xnew� then

19 xmin � xnear;

20 cmin � cnew;

21 end

22 E � E r�xmin, xnew�x<;

23 for ¾xnear " Xnear do

24 cnear � Cost�xnear�;
25 cnew � Cost�xnew� � c�Line�xnew, xnear�;
26 if cnew $ cnear then

27 if CollisionFree�xnew, xnear� then

28 xparent � Parent�xnear�;
29 E � E

s�xparent,xnear�y ;
30 E � E < r�xnew, xnear�x;

31 end

32 if InGoalRegion�xnew� then

33 Xsoln � Xsoln < rxnewx;

34 end

35 return τ ;

45

4 ALGORITHMEN

v Sample: Bei zwei Punkten xfrom, xto " Xfree, und einem maximalen heuristischen

Wert, cmax " R, gibt die Funktion Sample�xfrom, xto, cmax� unabhängige und ver-

teilte Samples aus dem Zustandsraum, xnew " X, zurück, so dass die Kosten eines

optimalen Pfades zwischen xfrom und xto, der xnew durchlaufen muss, kleiner als

cmax sind (wie in Algorithmus 6). Bei den meisten Planungsproblemen xfrom � xstart,

xto � xgoal, und die Zeilen 2 bis 4 von Algorithmus 6 werden zu Beginn des Problems

einmal berechnet.

v InGoalRegion: Bei einem Punkt x " Xfree gibt die Funktion InGoalRegion den Zu-

stand True zurück, wenn der Punkt sich in der Zielregion Xgoal befindet, andernfalls

False. Eine gemeinsame Zielregion ist eine Kugel mit dem Radius rgoal um dem Ziel.

D. h.Xgoal � sx " Xfree ¶ ¾x � xgoal¾2
(rgoaly.

v RotationToWorldFrame: Bei zwei Punkten als Brennpunkte eines Hyperellipsoids,

xfrom, xto " X, gibt die Funktion RotationToWorldFrame �xfrom, xto� die Rotati-

onsmatrix C " SO�n� von der hyperellipsoid ausgerichteten Koordinate zur Weltko-

ordinate zurück. Wie bereits erwähnt, muss diese Rotationsmatrix bei den meisten

Planungsproblemen zu Beginn des Problems nur einmal berechnet werden [9].

v SampleUnitNBall : Die Funktion SampleUnitNBall gibt ein einheitliches Sample aus

dem Volumen einer Kugel mit einem Einheitsradius zurück, d. h. xball � υ�X�.
Algorithm 6: Informiertes RRT*-Sample

Input: �xstart, xgoal, cmax�
Output: xrand

1 if cmax $� then

2 cmin � ¾xgoal � xstart¾2
;

3 xcentre �
�xstart�xgoal�

2
;

4 C � RotationToWorldFrame�xstart, xgoal�;
5 r1 �

cmax

2
;

6 rrixi�2,�,n � �Õc2max�c
2
min�

2
;

7 L� diag rr1, r2,�, rnx;

8 xball �SampleUnitBall;

9 xrand � �CLxball � xcentre� =X;

10 end

11 xrand � υ�X�;
12 return xrand;

Bei jeder Iteration muss der Rewire-Radius rRRT� groß genug sein, um eine fast sichere

asymptotische Konvergenz zu gewährleisten, aber klein genug, um einige gefügige Rewire-

Kandidaten zu erzeugen. Der informierte RRT* tastet die Teilmenge des Planungspro-

46

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

blems, die die Lösung verbessern kann, gleichmäßig ab. Aus die informierte Teilmenge

und die zugehörigen Punkten darin werden ein Rewire-Radius berechnet. Dieser aktuali-

sierte Radius reduziert die erforderliche Neuverdrahtung und verbessert die Leistung vom

informierten RRT* weiter.

Der informierte RRT* wird mit dem RRT* bei einer Vielzahl einfacher Planungsprobleme

(Abbildungen 4.12) und zufällig erzeugter Umgebungen verglichen. Die Abbildungen 4.12

a) und 4.12 b) zeigen die Recheneffizienz des RRT* und des informierten RRT*, wobei

die Breite des Hindernisses zufällig ausgewählt wurde. In fünf Sekunden finden beide Al-

gorithmen eine supoptimale Lösung. Der informierte RRT* kann immer eine gegenüber

RRT* signifikant reduzierte Domäne durchsuchen, was sowohl die Konvergenzrate als

auch die Qualität der endgültigen Lösung erhöht. Im Vergleich dazu benötigt benötigt

der RRT*-Algorithmus (4.12) erhebliche Rechenressourcen für die Erforschung von Re-

gionen des Planungsproblems, die die aktuelle Lösung möglicherweise nicht verbessern.

Abbildungen 4.12 c) 4.12 d) zeigen, dass beide Algorithmen Pfade durch eine Wand mit

einem 3%-außermittigen Spalt finden. Durch Fokussieren des Suchraums auf die Teil-

menge von Zuständen, die eine anfängliche Lösung verbessern können, die das Hindernis

flankiert, kann der informierte RRT* in vier Sekunden einen Pfad durch die enge Öffnung

finden, während RRT* 12,32 Sekunden benötigt. Abbildung 4.12 d) verdeutlicht, dass die

vom informierten RRT* gesuchte Trajektorie in einer Ellipse konzentriert ist, während die

von RRT* gesuchte Trajektorie divergent ist. Das bedeutet, dass der informierte RRT*-

Algorithmus zielorientiert ist.

Zusammenfassend lässt sich festhalten, dass der informierte RRT* in der Lage ist, nahezu

optimale Lösungen mit deutlich weniger Iterationen als der RRT* zu finden. Die direkte

Abtastung der informierten Teilmenge erhöht die Dichte um die optimale Lösung schneller

als die globale Abtastung und erhöht daher die Wahrscheinlichkeit, die Lösung zu verbes-

sern und die Suche stärker weiter zu fokussieren. Im Gegensatz dazu weist RRT* über

den gesamten Planungsraum eine gleichmäßige Dichte auf und verringert tatsächlich die

Wahrscheinlichkeit, weitere Verbesserungen zu finden. Der informierte RRT* garantiert

die gleiche Wahrscheinlichkeit für Vollständigkeit und Optimalität wie RRT* und verbes-

sert gleichzeitig die Konvergenzrate und Qualität der endgültigen Lösung [9]. Außerdem

zeigt die Methode weniger Abhängigkeit von der Zustandsdimension und dem Bereich des

Planungsproblems. In dieser Arbeit wird daher für die Pfadplanung in drei Dimensionen

der informierte RRT* verwendet.

47

4 ALGORITHMEN

a) 5 Sekunden, cbest � 114, 86 b) 5 Sekunden, cbest � 112, 52

c) 12, 32 Sekunden d) 4, 0 Sekunden

Abbildung 4.12: Leistungsvergleich zwischen RRT* und informiertem RRT* [9]

4.2.2 A*-Algorithmus

Der A*-Algorithmus (auch A*-Suche; Englisch: A* search algorithm) dient in der Infor-

matik der Berechnung des kürzesten Pfades zwischen zwei Knoten in einem Graphen mit

positiven Kantengewichten. Er wurde 1968 von Peter Hart, Nils J. Nilsson und Bert-

ram Raphael beschrieben. Wie der informierte RRT*-Algorithmus, verwendet auch der

A*-Algorithmus eine Heuristikfunktion (Schätzfunktion), um zielgerichtet zu suchen und

damit die Laufzeit zu verringern. Der Algorithmus ist vollständig und optimal, d. h., dass

immer eine optimale Lösung gefunden wird, falls eine solche existiert [10].

Im Gegensatz zum informierten RRT*-Algorithmus zielt die Heuristik des A*-Algorithmus

nicht darauf ab, mögliche Lösungen zu finden, sondern darauf, den Abstand vom Start

zum Ziel zu schätzen. Bei jeder Iteration des Hauptloop muss A* bestimmen, in welche

Richtung ein Pfade erweitert werden soll. Dies geschieht auf Basis der geschätzten Kosten

aus die Schätzfunktion sowie der Knoten der Open List und der Closed List. Die Knoten

sind Punkte in einem Graphen, durch die Pfade verlaufen können. Der A*-Algorithmus

untersucht immer jene Knoten zuerst, die wahrscheinlich schnell zum Ziel führen. Um

den vielversprechendsten Knoten zu ermitteln, wird allen bekannten Knoten x jeweils ein

48

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

Wert f�x� zugeordnet. Dieser entspricht der geschätzten Länge des Pfades vom Start zum

Ziel unter Verwendung des betrachteten Knotens im günstigsten Fall. Als nächstes wird

der Knoten mit dem niedrigsten f-Wert untersucht.

f�x� � g�x� � h�x� (4.1)

Für einen Knoten x bezeichnet g�x� die bisherigen Kosten vom Startknoten aus, um x zu

erreichen, während h�x� die geschätzten Kosten von x bis zum Zielknoten repräsentiert.

Die verwendete Heuristik darf die Kosten nicht überschätzen. Für das Beispiel der Weg-

suche ist die Luftlinie eine geeignete Schätzung. Die tatsächliche Strecke ist nie kürzer

als die direkte Verbindung. Abbildung 4.13 zeigt die Funktion der Heuristik und die Be-

rechnung des f-Werts. Die Zahlen auf den schwarzen Linien geben jeweils die Entfernung

zwischen zwei Knoten an. Der h-Wert jedes Knotens ist der geschätzte Abstand des Kno-

tens vom Zielknoten. Am Anfang wird der f-Wert für die Knoten a und d berechnet, um

den günstigsten Knoten auszuwählen. Dabei ist g�a� gleich 1, 5 und g�d� gleich 2. Die

Werte von f�a� und f�d� können mit den Werten von h�a� und h�b� verglichen werden.

In Abbildung 4.13 ist f�a� 5, 5und f�d� 6, 5, also die größer als f�a�. Deswegen wird

der Pfad zuerst in die a-Richtung erweitert. Es werden alle Nachfolgeknoten vom Start-

knoten betrachtet. Für den Knoten b wird der Wert von f�b� mit f�d� verglichen. g�b�
ist gleich g�a� zuzüglich des Abstands zwischen a und b, d.h. g�b� ist 3, 5 und g�d� ist

2. Im Vergleich zu f�d� ist f�b� noch kleiner. Somit erstreckt sich der Pfad weiter zum

b-Knoten.

a) A*-Schätzfunktion b) A*-Schätzfunktion

Abbildung 4.13: A*

Die Knoten werden während der Suche in drei verschiedene Klassen eingeteilt, nämlich

unbekannte Knoten, bekannte Knoten und abschließend untersuchte Knoten. Die unbe-

kannten Knoten wurden während der Suche noch nicht gefunden. Zu ihnen ist noch kein

Weg bekannt. Jeder Knoten (außer dem Startknoten) ist zu Beginn des Algorithmus un-

bekannt. Zu den bekannten Knoten ist ein (möglicherweise suboptimaler) Weg bekannt.

49

4 ALGORITHMEN

Alle bekannten Knoten werden zusammen mit ihrem jeweiligen f-Wert in der Open List

gespeichert. Aus dieser Liste wird immer der vielversprechendste Knoten ausgewählt und

untersucht. Die Implementierung der Open List hat großen Einfluss auf die Laufzeit und

wird oft als einfache Prioritätswarteschlange (z. B. binärer Heap) realisiert. Zu abschlie-

ßend untersuchten Knoten ist der kürzeste Weg bekannt. Die abschließend untersuchten

Knoten werden in der Closed List gespeichert, damit sie nicht mehrfach untersucht wer-

den. Um effizient entscheiden zu können, ob sich ein Element auf der Closed List befindet,

wird diese oft als Menge implementiert. Die Closed List ist zum Beginn leer [51] [52].

Jeder bekannte oder abschließend untersuchte Knoten enthält einen Zeiger auf seinen (bis-

her besten) Vorgängerknoten, damit der Pfad bis zum Startknoten zurückverfolgt werden

kann. Wird ein Knoten x abschließend untersucht (auch expandiert oder relaxiert), so

werden seine Nachfolgeknoten in die Open List eingefügt und x in die Closed List aufge-

nommen. Für neu eingefügte Nachfolgeknoten werden die Vorgängerzeiger auf x gesetzt.

Ist ein Nachfolgeknoten bereits auf der Closed List, so wird er nicht erneut in die Open

List eingefügt und auch sein Vorgängerzeiger nicht geändert. Ist ein Nachfolgeknoten be-

reits auf der Open List, so wird der Knoten nur aktualisiert (f-Wert und Vorgängerzeiger),

wenn der neue Weg dorthin kürzer ist als der bisherige.

Sobald der Zielknoten abschließend untersucht wurde, endet dieser Durchlauf des Algo-

rithmus. Der gefundene Weg wird mit Hilfe der Vorgängerzeiger rekonstruiert und aus-

gegeben. Falls die Open List leer ist, gibt es keine Knoten mehr, die untersucht werden

könnten. In diesem Fall terminiert der Algorithmus, da es keine Lösung gibt. Bedingt

durch die Vorgängerzeiger wird der gefundene Weg vom Ziel ausgehend rückwärts bis

zum Start ausgegeben. Um den Weg in der richtigen Reihenfolge zu erhalten, können z.

B. vor der Wegsuche Start und Ziel vertauscht werden. Somit wird vom eigentlichen Ziel

zum Start gesucht und die Wegausgabe beginnt beim ursprünglichen Startknoten [53].

Die Diagramme in Abbildung 4.14 zeigen eine Wegfindung um ein Hindernis mittels A*-

Suche. Die graue L-Form stellt das Hindernis dar, durch das der Pfad nicht verlaufen kann.

Der hellgrüne Punkt in der oberen rechten Ecke ist das Ziel, und der Startpunkt befindet

sich in der unteren linken Ecke. Bekannte Knoten sind hellblau umrandet, abschließend

untersuchte Knoten sind ausgefüllt. Die Farbe letzterer markiert dabei die Entfernung

zum Ziel; je grüner, desto weniger weit ist dieser vom Ziel entfernt. Zu beobachten ist,

dass der A* zuerst in einer geraden Linie in Richtung Ziel strebt, bis er auf das Hindernis

stößt. Erreicht er den Zielknoten, erkundet er zuerst noch alternative Knoten in der Open

List, bevor er terminiert.

Es ist erwiesen, dass der A*-Algorithmus vollständig, optimal und optimal effizient ist [52].

D. h. A* expandiert eine minimale Anzahl an Knoten. Allerdings ist es immer schwie-

50

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

a) b)

c) . d)

Abbildung 4.14: A*-Pfadplanung in zwei Dimensionen mit Gitter [10]

rig, die Heuristikfunktion auszuwählen. Ist die Heuristik nicht monoton, erhöht sich die

Laufzeit exponentiell, da Knoten mehrfach verknüpft werden. Je genauer die Kosten-

abschätzung ist, desto weniger Knoten werden untersucht. Das Einstellen einer guten

heuristischen Funktion kann die Genauigkeit und Recheneffizienz der Lösung erheblich

verbessern. Außerdem ist der begrenzende Faktor bei A* oft nicht die Rechenzeit, son-

dern der Speicherplatz. Da alle bekannten Knoten im Speicher gehalten werden (Open

List und Closed List), ist A* für viele Probleme nicht geeignet. Schon beim einfachen

15-Puzzle hat der komplette Graph bereits 16!=20.922.789.888.000 Knoten. Bei einem

entsprechend langen Lösungsweg reicht der verfügbare Speicher nicht aus und A* kann

keine Lösung finden [10].

4.2.3 CBS und ECBS

Der RRT-Algorithmus und der A*-Algorithmus konzentrieren sich auf die Routenpla-

nung von Einzelagenten. Im Multi-Agenten Pfadfindung (MAPF) als Forschungsgegen-

stand dieser Arbeit sollen Pfade für mehrere Agenten mit jeweils unterschiedlicher Start-

und Zielposition gefunden werden, so dass Agenten nicht kollidieren. Um das MAPF-

51

4 ALGORITHMEN

Problem zu lösen,wird im Folgenden die konfliktbasierte Suche (conflict-Based Search,

CBS) vorgestellt, ein zweistufiger Algorithmus, bei dem die Suche auf hoher Ebene in

einem Einschränkungsbaum (Constraint Tree (CT)) durchgeführt wird, dessen Knoten

zeitliche und räumliche Einschränkungen für einen einzelnen Agenten enthalten. An je-

dem Knoten im Einschränkungsbaum wird eine Suche auf niedriger Ebene durchgeführt,

um neue Pfade für alle Agenten unter den vom Knoten auf hoher Ebene vorgegebenen

Einschränkungen zu finden. Im Gegensatz zu A*-basierten Suchvorgängen, bei denen der

Suchbaum mit der Anzahl der Agenten exponentiell steigt, ist der Suchbaum von CBS

in der Anzahl der Konflikte, die während des Lösungsprozesses auftreten, exponentiell.

Das bedeutet, dass die Komplexität des Suchbaums mit steigender Anzahl von Konflik-

ten exponentiell zunimmt. Der Zustandsraum von MAPF ist exponentiell in der Anzahl

der Agenten. Im Gegensatz dazu ist bei einem Einzelagenten-Pfadfindungsproblem der

Zustandsraum in der Diagrammgröße nur linear. Der CBS-Algorithmus löst das MAPF-

Problem, indem es in eine große Anzahl von Einzelagenten-Pfadfindungsproblemen zerlegt

wird. Jedes Problem ist relativ einfach zu lösen [11].

Im CBS-Algorithmus wird der Begriff Pfad nur im Kontext eines einzelnen Agenten ver-

wendet. Die Lösung bedeutet eine Menge von k Pfaden für eine gegebene Menge von k

Agenten. Eine Einschränkung für einen gegebenen Agenten ai ist ein Tupel �ai, v, t�, bei

dem es dem Agenten ai verboten ist, den Punkt v zum Zeitpunkt t zu besetzen. Im Verlauf

des Algorithmus werden Agenten mit Einschränkungen verbunden. Ein konsistenter Pfad

für Agent ai ist ein Pfad, der alle seine Einschränkungen erfüllt. Ebenso ist eine konsi-

stente Lösung eine Lösung, die aus Pfaden besteht, so dass der Pfad für Agent ai mit den

Einschränkungen von ai konsistent ist. Ein Konflikt ist ein Tupel �ai, v, t�, bei dem Agent

ai und Agent aj zum Zeitpunkt t den Punkt v besetzen. Eine Lösung (von k Pfaden)

ist gültig, wenn alle ihre Pfade keine Konflikte aufweisen. Eine konsistente Lösung kann

ungültig sein, wenn diese Pfade trotz der Tatsache, dass sie mit den Einschränkungen der

einzelnen Agenten übereinstimmen, immer noch Konflikte aufweisen. Die Schlüsselidee des

CBS-Algorithmus besteht darin, eine Reihe von Einschränkungen für jeden Agenten zu

erweitern und Pfade zu finden, die diesen Einschränkungen entsprechen. Wenn diese Pfa-

de Konflikte aufweisen und daher ungültig sind, werden die Konflikte durch Hinzufügen

neuer Einschränkungen gelöst. Der CBS-Algorithmus arbeitet auf zwei Ebenen. Auf ho-

her Ebene werden Konflikte gefunden und Einschränkungen hinzugefügt. Auf niedriger

Ebene werden die Agentenpfade so aktualisiert, dass sie mit den neuen Einschränkungen

übereinstimmen. Die beiden Teile werden im Folgenden ausführlicher beschrieben.

Auf hoher Ebene durchsucht der CBS-Algorithmus einen CT. Der CT ist ein Binärbaum,

in dem jeder Knoten N die folgenden Datenfelder enthält.

52

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

v Eine Reihe von Einschränkungen (N.Einschränkungen). Die Wurzel des CT enthält

einen leeren Satz von Einschränkungen. Das untergeordnete Element eines Knotens

in der CT erbt die Einschränkungen des übergeordneten Knotens und fügt eine neue

Einschränkung für einen Agenten hinzu.

v Eine Lösung (N.Lösungen). Eine Menge von k Pfaden, ein Pfad für jeden Agenten.

Der Pfad für Agent ai muss mit den Einschränkungen von ai übereinstimmen. Solche

Pfade werden auf der niedrigeren Ebene errechnet.

v Die Gesamtkosten (N.Kosten) der aktuellen Lösung (Summe aller Pfadkosten für

einen einzelnen Agenten). Der Knoten N in dem CT ist ein Zielknoten, wenn die

N.Lösung gültig ist, wenn also die Pfade für alle Agenten keine Konflikte aufweisen.

Die hohe Ebene führt eine Best-First-Suche auf dem CT durch, bei der die Knoten

nach ihren Kosten geordnet sind. Bindungen werden mithilfe einer Konfliktvermei-

dungstabelle (CAT) wie oben beschrieben unterbrochen.

Angesichts der Liste der Einschränkungen für einen Knoten N wird die Suche auf niedri-

ger Ebene aufgerufen. Diese Suche gibt den kürzesten Pfad für jeden Agenten ai zurück,

der mit den Einschränkungen von ai übereinstimmt. Sobald für jeden Agenten ein kon-

sistenter Pfad in Bezug auf seine Einschränkungen gefunden wurde, werden diese Pfade

in Bezug auf die anderen Agenten validiert. Die Validierung wird durchgeführt, indem

die k Pfaden simuliert werden. Wenn alle Agenten ihr Ziel ohne Konflikte erreichen, wird

dieser CT-Knoten N als Zielknoten deklariert und die aktuelle Lösung (N.Lösung), die die

Pfade enthält, zurückgegeben. Wenn jedoch ein Konflikt C � �ai, aj, v, t� für zwei oder

mehr Agenten ai und aj während der Validierung gefunden wird, wird die Validierung

angehalten und der Knoten als Nichtzielknoten deklariert.

Bei einem Nichtziel-CT-Knoten N, dessen Lösung N.Lösung einen Konflikt Cn ��ai, aj, v, t� enthält, kann der Punkt v zum Zeitpunkt t in jeder gültigen Lösung höchstens

bei einem der Konfliktagenten (ai und aj) besetzt werden. Daher muss mindestens eine

der Bedingungen �ai, v, t� oder �aj, v, t� zu der Menge von Bedingungen in N.Bedingungen

hinzugefügt werden. Um Optimalität zu gewährleisten, werden beide Möglichkeiten ge-

prüft und N in zwei Kinder aufgeteilt. Beide Kinder erben die Menge der Einschränkungen

von N. Das linke Kind löst den Konflikt durch Hinzufügen der Einschränkung �ai, v, t�
und das rechte Kind fügt die Einschränkung �aj, v, t� hinzu.

Es ist zu beachten, dass für einen gegebenen CT-Knoten N nicht alle kumulativen Ein-

schränkungen gespeichert werden müssen. Stattdessen kann der Knoten nur die letzte

Einschränkung speichern und die anderen Einschränkungen fallenlassen, indem er den

Pfad von N zur Wurzel über seine Vorfahren durchläuft. In ähnlicher Weise sollte die

Suche auf niedriger Ebene nur nach Agent ai durchgeführt werden, der der neu hinzu-

53

4 ALGORITHMEN

gefügten Einschränkung zugeordnet ist. Die Pfade anderer Agenten bleiben dieselben, da

für sie keine neue Einschränkung hinzugefügt wurde. Die hohe Ebene des CBS wird in

Algorithmus 7 dargestellt.

Algorithm 7: Die hohe Ebene von CBS

Input: MAPF Problem

Output: Lösungen der MAPF

1 R.constraints � o;

2 R.solution � find individual paths using the low-level();

3 R.cost � SIC(R.solution) insert R to OPEN ;

4 while OPEN not empty do

5 P � best node from OPEN ©© lowest solution cost;

6 Validate the paths in P until a conflict occurs;

7 if P has no conflict then

8 return P .solution ©© P is goal;

9 end

10 C � first conflict Cn � �ai, aj, v, t� in P;

11 for agent ai in C do

12 A� new node;

13 A.constriants � P.constriants ��ai, s, t�;
14 A.solution � P.solution ;

15 Update A.solution by invoking low-level�ai�;
16 A.cost � SIC(A.solution);

17 insert A to OPEN ;

18 end

19 end

Auf der niedrigen Ebene werden ein Agent, ai und eine Reihe von zugehörigen Ein-

schränkungen eingegeben, um einen optimalen Pfad für Agent ai zu finden, der allen

seinen Einschränkungen entspricht. Die anderen Agenten werden ignoriert. Diese Suche

ist dreidimensional, da sie zwei räumliche Dimensionen und eine Zeitdimension umfasst.

Jeder einzelne Agent-Pfadfindungsalgorithmus kann verwendet werden, um den Pfad für

Agent ai zu finden und gleichzeitig zu überprüfen, ob die Einschränkungen erfüllt sind. In

dieser Arbeit wird der A*-Algorithmus mit einer perfekten Heuristik in beiden räumlichen

Dimensionen verwendet. Für jeden CT-Knoten N wurde ein CAT auf niedriger Ebene

verwendet. Er wird durch die aktuellen Pfade des Knotens N initialisiert. Wenn zwei

Zustände auf niedriger Ebene dieselben f-Werte haben, wird der Zustand mit der gering-

sten Anzahl von Konflikten im CAT bevorzugt. Dies führt zu einer Lösung von höherer

Qualität (weniger widersprüchliche Agenten) für jeden Knoten auf hoher Ebene.

54

4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

Abbildung 4.15 zeigt ein Beispiel, in dem zwei Mäuse zu ihren jeweiligen Käsestücken

gelangen müssen. Die entsprechende CT ist in rechter Abbildung dargestellt. Die Wurzel

enthält einen leeren Satz von Einschränkungen. Die niedrige Ebene gibt nun eine opti-

male Lösung für jeden Agenten zurück (Zeile 2 von Algorithmus 7), �S1, A1, C,G1� für

a1 und �S2, B1, C,G2� für a2. Somit betragen die Gesamtkosten dieses Knotens 6. Alle

diese Informationen werden in diesem Knoten gespeichert. Die Wurzel wird dann in die

OPEN-Liste eingefügt und als nächstes erweitert. Bei der Validierung der Zwei-Agenten-

Lösung, die durch die beiden einzelnen Pfade (Zeile 7) gegeben ist, wird ein Konflikt

gefunden, wenn beide Agenten zum Zeitpunkt 2 zum Scheitelpunkt C gelangen. Dies er-

zeugt den Konflikt �a1, a2, C, 2�. Infolgedessen wird die Wurzel als Nichtziel deklariert

und zwei untergeordnete Elemente werden generiert, um den Konflikt zu lösen (Zeile 11).

Das linke Kind fügt die Einschränkung �a1, C, 2� hinzu, während das rechte Kind die

Einschränkung �a2, C, 2� hinzufügt. Die Suche auf niedriger Ebene wird jetzt aufgerufen

(Zeile 15), um einen optimalen Pfad zu finden, der auch die neue Einschränkung erfüllt.

Für das linke Kind muss a1 einen Zeitschritt entweder bei S1 (oder bei A1) warten und

der Pfad�S1, A1, A1, C,G1� wird für a1 zurückgegeben. Der Pfad für a2, �S2, B1, C,G2�
bleibt für das linke Kind unverändert. Die Gesamtkosten für das linke Kind betragen

jetzt 7. In ähnlicher Weise wird das rechte Kind ebenfalls mit den Kosten 7 generiert.

Beide Kinder werden zu OPEN hinzugefügt (Zeile 17). Im letzten Schritt wird das linke

Kind für die Erweiterung ausgewählt, und die zugrunde liegenden Pfade werden validiert.

Da keine Konflikte bestehen, wird das linke Kind als Zielknoten deklariert (Zeile 9) und

seine Lösung als optimale Lösung zurückgegeben.

Abbildung 4.15: CBS-Pfadplanung [11]

Es lässt sich festhalten, eine sehr flexible zur optimalen Lösung des MAPF-Problems

55

4 ALGORITHMEN

darstellt, denn auf der niedrigen Ebene können bei Bedarf verschiedene Single-Path-

Planungsalgorithmen (z. B. RRT und A*) verwendet werden. Auf hoher Ebene reduziert

der Einschränkungsbaum die Zeitkomplexität für eine große Anzahl von Agenten erheb-

lich. Eine große Herausforderung für den CBS-Algorithmus bestehlt allerdings, wenn die

Umwelt kompliziert ist oder viele Konflikte zwischen Agenten auftreten. Um die Optima-

lität zu gewährleisten, führen sowohl die hohe- als auch die niedrige Ebene des CBS

eine optimale Best-First-Suche durch. Wie bei jeder Best-First-Suche verursacht dies

zusätzliche Arbeit, da die Knoten, die möglicherweise Lösungen sehr nahe liegen, ver-

lassen werden, nur weil ihre Kosten sind hoch.

Enhanced CBS (ECBS) ist eine w-suboptimale Variante von CBS, deren Suchvorgänge auf

hoher und niedriger Ebene eher eine Fokussuche als Best-First-Suche sind. Eine Fokussu-

che verwendet wie A* eine OPEN -Liste, deren Knoten n in aufsteigender Reihenfolge ihrer

f-Werte f�n� � g�n��h�n� sortiert sind. Im Gegensatz zu A* verwendet eine Fokussuche

mit dem Suboptimalitätsfaktor w und zwei Listen, OPEN und FOCAL. OPEN ist die re-

guläre OPEN -Liste des A*-Algorithmus. FOCAL enthält eine Teilmenge von Knoten aus

OPEN. Die Fokussuche verwendet zwei beliebige Funktionen f1 und f2. f1 definiert die

Knoten, die sich in FOCAL befinden. f1min
ist der minimale f1-Wert in OPEN. Bei einem

Suboptimalitätsfaktor w enthält FOCAL alle Knoten n in OPEN, unter der Bedingung

f1�n� & w�f1min
. Mit f2 wird bestimmt, welcher Knoten aus FOCAL erweitert werden soll.

Wenn f1 zulässig ist, wird garantiert, dass die zurückgegebene Lösung höchstens w � C

ist.

Die OPEN -Liste besteht aus OPEN i, das in der niedrigen ECBS-Ebene verwendet wird,

wenn nach einem Pfad für Agent ai gesucht wird. Der mit fmin�i� bezeichnete minimale

f-Wert in OPEN i ist eine Untergrenze für die Kosten des optimalen konsistenten Pfades

für ai (für den aktuellen CT-Knoten). Für einen CT-Knoten n, LB�n� � <k

i�1 fmin�i�,
das bedeutet LB�n� & n.cost & LB�n� � w. Im ECBS-Algorithmus gibt die niedrige

Ebene für jeden erzeugten CT-Knoten n zwei Werte auf den hohen Pegel zurück, nämlich

n.Kosten und LB�n�. Es sei LB � min�LB�n� ¶ n " OPEN�, wobei OPEN aus der

hohen Ebene ist. LB ist eindeutig eine Untergrenze für die optimale Lösung des gesamten

Problems (c
�
). FOCAL in ECBS wird in Bezug auf LB und n.Kosten wie folgt definiert:

FOCAL � rn ¶ n " OPEN, n.kosten & LB � wx (4.2)

Da LB eine Untergrenze für C
�

ist, haben alle Knoten in FOCAL die Kosten, die innerhalb

des w-fachen der optimalen Lösung liegen. Sobald eine Lösung gefunden ist, betragen die

Kosten höchstens w � C
�
. Der Vorteil von ECBS gegenüber CBS besteht darin, dass die

56

4.3 BERNSTEINPOLYNOME

niedrige Ebene und die hohe Ebene mehr Flexibilität erhalten. Darüber hinaus stimmen

alle gültigen Lösungen immer mit mindestens einem der CT-Knoten in OPEN überein.

Aufgrund der systematischen Suchen werden ECBS-Algorithmen schließlich eine Lösung

finden, wenn eine solche existiert. Somit ist ECBS auch vollständig [54][55].

4.3 Bernsteinpolynome

Im mathematischen Bereich der numerischen Analyse sind Bernsteinpolynome Polynome

in Bernstein-Form, d. h. eine lineare Kombination von Bernstein-Basispolynomen. Die

Bernsteinpolynome haben ihren Ursprung in der Approximationstheorie. Mit ihrer Hilfe

konnte ihr Entdecker, Sergei Natanovich Bernstein, im Jahr 1911 einen konstruktiven Be-

weis für den Approximationssatz von Karl Weierstraß angeben. Ende der 1950er Jahre gab

es erste Versuche, auf Bernsteinpolynomen basierende Methoden im Design von Kurven

und Flächen einzusetzen. Paul de Faget de Casteljau bei Citroën und Pierre Bézier bei

Renault nutzten die Bernsteinpolynome bei ihrer Entwicklung von Bézierkurven und leg-

ten damit den Grundstein des heutigen Computer Aided Design (CAD). In dieser Arbeit

werden die Bernsteinpolynome verwendet, um nichtkonvexe Beschränkungen in konvexe

Beschränkungen umzuwandeln und die Trajektorien zu optimieren [56].

Für n " N0 heißen die reellen Polynome Bi,n � R � R, t (�n
i
�ti�1 � t�n�i, 0 (i (n die

Bernsteinpolynome vom Grad n. Durch affine Transformation (Abbildung des Intervalls�0, 1� auf ein beliebiges Intervall �a, b�) erhält man die verallgemeinerten Bernsteinpoly-

nome B
�a,b�
i,n � R� R, t(

1�b � a�n �ni��t� a�i�b� t�n�i. Dabei bezeichnet �n
i
� � n!

i!�n � i�!
den Binomialkoeffizienten [57]. Das Bernsteinpolynom ist die lineare Kombination von

Bernstein-Basispolynomen, und das Bernstein-Basispolynom vom Grad n ist wie folgt

definiert:

B
i
n�t� � �ni� � ti � �1 � t�n�i (4.3)

Das Polynom, das aus der Bernstein-Basis besteht, wird als Bézierkurve bezeichnet und

wie folgt geschrieben:

Bj�t� � c0jbon�t� � c1jb1n�t� ��� c
n
j b
n
n�t� � n

=
i�0

c
i
jb
i
n�t� (4.4)

Dabei ist �c0j , c1j ,�, c
n
j � bezeichnet als cj, die Menge der Kontrollpunkte des j -ten Stücks

der Bézierkurve. Die Bézierkurve unterscheidet sich vom mononomischen Basispolynom

durch folgende Eigenschaften [58].

57

4 ALGORITHMEN

v Endpunkt-Interpolation. Die Bézierkurve beginnt immer am ersten Kontrollpunkt,

endet am letzten Kontrollpunkt und verpasst niemals andere Kontrollpunkte.

v Festes Intervall. Die auf die Variable t parametrisierte Bézierkurve ist auf t " �0, 1�.
v Konvexe Hülle. Die Bézierkurve B�t� besteht aus einem Satz von Kontrollpunkten

ci, die vollständig innerhalb der durch alle diese Kontrollpunkte definierten konvexen

Hülle begrenzt sind.

v Hodograph-Eigenschaft. Die Ableitungskurve B
�1��t� einer Bézierkurve B�t� wird

als Hodograph bezeichnet und ist immer noch eine Bézierkurve mit den definierten

Kontrollpunkten c
�1��i� � n � �ci�1 � ci�, wobei n der Grad ist.

Tatsächlich können für eine Bézierkurve die Kontrollpunkte als Gewichte der Basis und

auch die Basis als Gewichte der Kontrollpunkte angesehen werden. Da die Bézierkurve in

einem festen Intervall �0, 1� definiert ist, ist es erforderlich, dass ein Skalierungsfaktor s

für jedes Stück der Trajektorie eingefügt wird, um die Parameterzeit t auf eine willkürlich

zugewiesene Zeit für dieses Segment zu skalieren. Dementsprechend kann die stückweise

Bernstein-Basis des m-Segments in einer Dimension µ aus x, y, z wie folgt geschrieben

werden.

fµ�t� �
~����������������������

s1<n

i�0 c
i
µ1b

i
n�t � T0s1

�, t " �T0, T1�
s2<n

i�0 c
i
µ2b

i
n�t � T1s2

�, t " �T1, T2�
� �

sm<n

i�0 c
i
µmb

i
n�t � Tm�1sm

�, t " �Tm�1, Tm�
(4.5)

Dabei ist cji der i-te Kontrollpunkt des j-ten Segments der Trajektorie. T1, T2,�, Tm

sind die Endzeiten jedes Segments. Die Gesamtzeit beträgt T � Tm � To. s1, s2,�, sm

sind die Skalierungsfaktoren, die auf jedes Stück der Bézierkurve angewendet werden, um

das Zeitintervall von �0, 1� zur Zeit �Ti�1, Ti� in einem Segment zugeordnet. In der Praxis

wird durch Multiplizieren eines Skalierungsfaktors in der Position jedes Kurvenstücks eine

bessere numerische Stabilität für das Optimierungsprogramm erzielt [59][60].

58

5 Methoden

In diesem Kapitel werden zwei Methoden zur Lösung des MAPF-Problems vorgestellt,

nämlich eine statische Methode in drei Dimensionen und eine dynamische Methode in

vier Dimensionen. Im Rahmen dieser Arbeit wird die Pfadplanung basierend auf den

Dimensionen des kartesischen Koordinatensystems als statische Methode in drei Dimen-

sionen definiert, und die Pfadplanung basierend auf den drei räumlichen Dimensionen

und der zeitlichen Dimension wird als dynamische Methode in vier Dimensionen defi-

niert. Für die statische Methode steht die Kollisionsfreiheit durch überschneidungsfreie

Trajektorien im Zentrum. Die Pfade der Agenten dürfen sich nicht überschneiden, d. h.

es ist keine Überlappung von Pfaden erlaubt. Mit der dynamischen Methode kann dieses

Problem durch zeitliche Anpassung gelöst werden. Neben der Ebene der Pfadplanung der

statischen Methode wird eine Ebene der autonomen Entscheidungsfindung jedes Agen-

ten hinzugefügt. So können zwei Agenten A und B im Fall einer Pfadüberschneidung z.

B. entscheiden, dass A wartet bis B diesen Punkt durchquert hat. Im Folgenden wird

zunächst das mathematische Modell definiert, um das MAPF-Problem zu beschreiben.

Danach wird der Implementierungsprozess beider Methoden im Detail vorgestellt.

5.1 Mathematische Modelldefinition

Wie in Kapitel 1 erklärt, wird ein Multi-Agent-System aus N Quadrotoren betrachtet. Es

wird angenommen, dass die Quadrotor/Agenten die gleiche dynamische Grenze und ver-

schiedene Größen mit dem Radius r1,�, rN haben. Als Voraussetzung sind Vorkenntnisse

des freien Raums F und des Hindernisses O in der 3D-Belegungskarte angegeben. Start-

punkt und Zielpunkt des i -ten Quadrotors werden als si, gi zugewiesen. Es wurde gezeigt,

dass die Quadrotordynamik unterschiedlich flach ist und die Trajektorie in stückweisen

Polynomen mit flachen Ausgaben in der Zeit t dargestellt werden kann [61]. Somit kann

die Trajektorie des i -ten Quadrotors pi�t� in stückweisen M-Segment-Polynomen darge-

stellt werden. Durch die zwei Methoden wird für jeden Agenten eine kontinuierliche, glatte

Trajektorie pi�t� erzeugt, die Kollisionen mit Hindernissen und anderen Agenten verhin-

dert. Die maximale Geschwindigkeit und Beschleunigung des i-ten Quadrotors sind v
i
max

bzw. a
i
max.

59

5 METHODEN

5.1.1 Darstellung der Trajektorie

Aufgrund der unterschiedlichen Ebenheit der Quadrotordynamik ist bekannt, dass die

Flugtrajektorie des Quadrotors in einer Polynomfunktion mit flachen Ausgängen in der

Zeit t dargestellt werden kann [61]. Es ist jedoch schwierig, die Beschränkungen der Kolli-

sionsvermeidung auf Standardpolynombasis zu handhaben. Aus diesem Grund werden die

Trajektorien von Quadrotoren im Rahmen dieser Arbeit mit Bernsteinpolynome umge-

setzt. Das Bernsteinpolynom ist die lineare Kombination von Bernstein-Basispolynomen,

und das Bernstein-Basispolynom vom Grad n ist wie folgt definiert:

Bk,n�t� � �nk�tk�1 � t�n�k (5.1)

wobei t " �0, 1� und k � 0, 1,�, n. Die Trajektorie des i -ten Quadrotors pi�t� " R3 kann

als stückweise Bernsteinpolynom im M-Segment wie folgt dargestellt werden:

p
i�t� �

~��������������������

<n

k�0 c
i
1,kBk,n�τ1� t " �T0, T1�

<n

k�0 c
i
2,kBk,n�τ2� t " �T1, T2�

� �

<n

k�0 c
i
M,kBk,n�τM� t " �TM�1, TM�

(5.2)

wobei τm �
t�Tm�1

Tm�Tm�1
, c

i
m,k ist der k -te Kontrollpunkt des m-ten Segments der Trajektorie

des i -ten Quadrotors ist, und Tm�1,Tm sind die Start- und Endzeit des m-ten Segments.

Somit besteht der Vektor des Optimierungsproblems, c, aus allen Kontrollpunkten von

pi�t� für i � 1,�, N . Wie in Kapitel 4 geschrieben, ist ein Tupel �ai, v, t� zur Beschrei-

bung der Einschränkung definiert. Dabei bezeichnet ai die einzelnen Agenten und v die

Koordinaten der Position. D. h. zu jeden Position v gibt es drei Achsen x, y, z für die

räumliche Darstellung. Das Zeichen t steht für den aktuellen Zeitpunkt.

5.1.2 Einschränkungen der Dynamik

Die Zielfunktion der Dynamik des Quadrotors wird wie folgt definiert (5.3), um das Inte-

gral der φ-ten Ableitung der Trajektorie zu minimieren:

J �
N

=
i�1

E
Tm

T0

ÂÂÂÂÂÂÂÂÂ
d
φ

dtφ
p
i�t�ÂÂÂÂÂÂÂÂÂ

2

2

dt � c
T
Qc (5.3)

60

5.1 MATHEMATISCHE MODELLDEFINITION

Dabei ist Q die hessische Matrix der Zielfunktion. In dieser Arbeit wird φ � 3 gesetzt,

um den Ruck der Trajektorie zu minimieren, so dass die Eingabe nicht aggressiv für den

Quadrotor ist [62].

Die Trajektorie muss die Start- und Zielpunkte verbinden und soll bis zur φ � 1-ten

Ableitung kontinuierlich sein. Außerdem dürfen die Geschwindigkeit und Beschleuni-

gung des Quadrotors die maximale Geschwindigkeit v
i
max und Beschleunigung a

i
max nicht

überschreiten. Diese Einschränkungen können als affine Gleichheits- bzw. Ungleichheits-

beschränkungen geschrieben werden:

Aeqc � beq (5.4)

Adync (bdyn (5.5)

5.1.3 Einschränkungen zur Vermeidung von Hindernissen

Zur Vermeidung von statischen Hindernissen wird das Hinderniskollisionsmodell des i -ten

Quadrotors definiert (5.6). Das Hinderniskollisionsmodell bestimmt einen Kollisionsbe-

reich zwischen einem Quadrotor und statischen Hindernissen, um einen sicheren Abstand

zu gewährleisten.

C
i
obs � tp " R3 ¶ ½p½2

2 & �ri2�z (5.6)

Der i-te Quadrotor muss die nachstehende Bedingung erfüllen, um nicht mit den Hinder-

nissen zu kollidieren:

p
i�t�h C

i
obs L F, t " �T0, TM� (5.7)

Dabei ist h die Minkowski-Summe. Die graphische Darstellung dazu ist das linke Dia-

gramm in Abbildung 6.1.

5.1.4 Einschränkungen zur Vermeidung von Interkollisionen

Ein Kollisionsbereich zwischen dem i -ten und j -ten Agenten kann mit einem Interkollisi-

onsmodell C
i,j
inter ausgedrückt werden (5.8).

C
i,j
inter � up " R3 ¶ pTEp (�ri � rj�2{ (5.8)

Dabei ist E die diagonale Matrix dia��1, 1, 1©�cdw�2��, und cdw ein Koeffizient zur Be-

schreibung des Abwind-Effekts/Downwash-Effekts (siehe Abbildung 6.2) [63]. Der i -te

61

5 METHODEN

Abbildung 5.1: Hindernis-Kollisionsmodell und Inter-Kollisionsmodell

Agent kollidiert nicht mit dem j -ten Agenten, wenn die relative Trajektorie des j -ten

Agenten in Bezug auf den i -ten Agenten, p
i,j�t� � p

j�t� � pi�t�, die folgende Bedingung

erfüllt(5.9). Abbildung 6.1 (rechts) ist eine graphische Darstellung des Interkollisionsmo-

dells.

p
i�t� = Ci,j

inter � o, t " �T0, TM� (5.9)

Abbildung 5.2: Abwind-Effekt/Downwash-Effekt

5.2 Statische Methode (ohne Zeitdimension)

Beim MAPF-Problem geht es darum, Kollisionen mit anderen Agenten sowie mit stati-

schen Hindernissen zu vermeiden. Beim SAPF-Problem werden nur der einzelne Agent

und statische Hindernisse betrachtet. Unter Verwendung des Pfadplanung-Algorithmus

ist das SAPF-Problem viel einfacher als das MAPF-Problem zu lösen. Beim SAPF gibt

62

5.2 STATISCHE METHODE (OHNE ZEITDIMENSION)

es keinen Einfluss dynamischer Hindernisse oder anderer Agenten, d. h. die Position der

Hindernisse verändert sich im Zeitverlauf nicht. Die Lösungsansätze des SAPF-Problems

konzentrieren sich auf die Methoden für nur die drei räumlichen Dimensionen, um Kolli-

sionen mit statischen Hindernissen zu vermeiden.

Im Gegensatz dazu müssen die MAPF-Lösungsansätze dynamische Hindernisse

berücksichtigen. Aus der Perspektive eines einzelnen Agenten sind die sich bewegenden

anderen Agenten dynamische Hindernisse. Deswegen muss beim MAPF-Problem die Zeit-

dimension hinzugefügt werden, um dynamische Hindernisse zu vermeiden. Es ist bekannt,

dass jede zusätzliche Dimension die Zeitkomplexität des Algorithmus exponentiell erhöht.

Es gibt zwei Optimierungsmöglichkeiten bei der Lösung des MAPF-Problems, nämlich

entweder die Anzahl der Dimensionen zu reduzieren oder die Algorithmuseffizienz zu

erhöhen. Die statische Methode wird zur Verminderung der Zahl der Dimensionen verwen-

det. Statt der Echtzeittrajektorien werden die Pfade aller anderen Agenten als statische

Hindernisse in der Karte gespeichert. Bei der Pfadplanung eins einzelnen Agenten werden

dann nur statische Hindernisse, und dazu zählen Hindernisse in der Umwelt ebenso wie

die Pfade der anderen Agenten. Somit wird das MAPF-Problem in ein SAPF-Problem

umgesetzt. Als Nächstes wird diese statische Methode im Detail betrachtet, beginnend mit

ihrer Architektur. Danach werden die vier Module der Methode vorgestellt, nämlich Kar-

tenkonstruktion, FCL Kollisionserkennung, Pfadplanung und Trajektoriengenerierung.

5.2.1 Architektur statischer Methode

Abbildung 6.16 stellt die Architektur der statischen Methode dar. Die rechteckigen Blöcke

repräsentieren die verschiedenen Module, und die Pfeile geben die Richtung des Informa-

tionsflusses an. Input und Output sind in den ovalen Feldern beschrieben. Zuerst wird

die Umgebung in OctoMap modelliert, um eine 3D-Belegungsgitter-Map zu erhalten. Die

Map-Information wird durch ROS-Knoten zum FCL-Modul gesendet. Zur Vereinfachung

der Kollisionserkennung werden Hindernisse als Kuben, die Drohne als Kugel, und der

Pfad als Zylinder modelliert. Dann wird der Pfad jeder Drohne durch den informierten

RRT*-Algorithmus sequenziell geplant. Wird ein gültiger Pfad errechnet, so wird dieser

als FCL-Kollisionsmodell gespeichert. Das Pfadplanungmodul generiert diskrete Pfade,

wie die gestrichelte Linie gezeigt. Dabei sind s
1
, s

2
die Startpunkte und g

1
, g

2
die Ziel-

punkte für Agenten 1 und 2. Im letzten Modul werden die Pfade unter Berücksichtigung

der Kinematik optimiert. Schließlich wird eine ausführbare Trajektorie für jede Drohne

generiert, angezeigt durch die durchgezogene Linie.

63

5 METHODEN

Abbildung 5.3: Architektur statischer Methode

5.2.2 Kartenkonstruktion

Als Voraussetzung für die Pfadplanung wird das Kartenkonstruktionsmodul verwendet,

um die Daten einer bekannten Umgebung zu modellieren und zu speichern. Im Rahmen

dieser Arbeit geht es primär um die Pfadplanung für Produktions- und Transportin-

frastruktur. Häufige Anwendungsbereiche sind Lagerhäuser und Werkstätten oder Indu-

strieparks. Für diese Arbeit werden ein Lagerhaus und ein Industriepark durch OctoMap

modelliert. Wie das Kapitel 3.4 beschrieben, basiert OctoMap auf Octree und einer pro-

babilistischen Belegungsschätzung. Es repräsentiert explizit nicht nur belegten Raum,

sondern auch freie und unbekannte Bereiche. Die Wahrscheinlichkeit P �n� beschreibt die

Belegungsschätzung des Knotens n. Wenn der Knoten frei ist, gilt P �n� � 0. Wenn der

Knoten belegt ist, gilt P �n� � 1. Je größer die Wahrscheinlichkeit ist, desto höher ist die

Wahrscheinlichkeit dafür, dass dieser Knoten belegt ist. Ist P �n� � 0, 5, so ist der Knoten

unbekannt. Um das Kartenmodell weiter zu vereinfachen, gibt es im Rahmen dieser Un-

tersuchung jedoch keine unbekannten Bereiche, so dass jeder Knoten nur zwei Zustände

haben kann, nämlich frei oder belegt. P �n� kann nur die Werte 0 und 1 annehmen. Die

Wahrscheinlichkeiten ändern sich nicht mit der Zeit. Wenn der Pfadplanungsalgorithmus

jeden Knoten in der Karte durchläuft, muss er nur eine Logik ausführen, um zu bestim-

men, ob jeder Knoten belegt ist, es gibt keine Unsicherheit und die Berechnungskomple-

xität wird verringert. Algorithmus 9 verdeutlicht den Prozess der Kartenkonstruktion.

64

5.2 STATISCHE METHODE (OHNE ZEITDIMENSION)

Der gesamte Raum θ besteht aus belegtem Raum ξ und freiem Raum %.

θ � ξ < %, ξ = % � o (5.10)

Zuerst wird das Octree mit einer vorgegebenen Auflösung initialisiert (Zeile 1). Dann

werden alle belegte und freie Knoten im Octree registriert und aktualisiert (Zeilen 2-

7). Schließlich wird eine 3D-Belegungskarte ε ausgegeben, und die Karte wird in eine

Datei mit .bt als Suffix geschrieben. Die .bt-Datei kann durch den OctoMap-Server mit

dem ROS-Framework verbunden sein. Die 3D-Belegungskarte wird über die ROS-Knoten

in Form einer ROS-Nachricht an den Planer gesendet. Die Abbildung zeigt OctoMap-

Visualisierung mit Rviz.

Algorithm 8: Kartenkonstruktion

Input: belegter Raum ξ � rξ1,�, ξNx, freier Raum % � r%1,�, %Mx, gesamter

Raum θ

Output: 3D-Belegungskarte ε

1 tree � Octree(resolution) ;

2 for i� 1 to N do

3 tree.updateNode(ξi, true) ;

4 end

5 for i� 1 to M do

6 tree.updateNode(%i, false) ;

7 end

8 tree.writeBinary(ε) ;

5.2.3 FCL-Kollisionserkennung

Das FCL-Kollisionsmodell behandelt die Darstellung von Objekten in einer hierarchischen

Datenstruktur, damit Kollisions- und Näherungsabfragen effizient ausgeführt werden

können. In statischen Methoden werden drei FCL-Kollisionsmodelle dargestellt, nämlich

das Hindernismodell, das Drohnenmodell und das Pfadmodell. In der Kartenkonstruktion

wird die Umgebung in einer 3D-Belegungskarte modelliert, und die statischen Hinder-

nisse werden im Octree gespeichert. Zur Vereinfachung der Kollisionserkennung werden

die besetzten Räume, P �n� � 1, zwischen Pfad und Umgebung als Hindernismodelle

beschrieben. Das Octree in OctoMap wird zu einem FCL-Octree konvertiert. Die Droh-

ne wird im FCL als Kugel mit dem Radius R modelliert, dabei steht R für die Summe

aus dem Radius der tatsächlichen Geometrie R1 der Drohne und dem Sicherheitsabstand

R2. Der Sicherheitsabstand ist abhängig vom Aerodynamikfaktor und dem Antrieb der

65

5 METHODEN

Drohne, z.B. Windkraft oder Motor. Der Pfad wird als Zylinder mit demselben Radius R

modelliert, der auf dem Pfad zentriert ist.

a) Drohne-Modell. b) Pfad-Modell

Abbildung 5.4: Kollisionsmodell

Die Kollisionserkennung ist im Flussdiagramm in Abbildung 6.17 dargestellt. Das Kollisi-

onsmodell ist die Geometrie des Kollisionsobjekts, und der Zustand des Modells beschreibt

die Kinematik des Kollisionsobjekts. Wenn zwei Kollisionsobjekte mit Kollisionsmodellen

und Zuständen initialisiert sind, berechnet der FCL Manager die Überlappung der Objek-

te mit dem Hüllkörperalgorithmus, um festzustellen, ob eine Kollision vorliegt. Schließlich

wird ein Kollisionsergebnis zurückgegeben. Durch logische Beurteilung kann der Algorith-

mus entscheiden, ob der aktuelle Pfad kollidiert, um zu bestimmen, ob der aktuelle Pfad

erweitert oder ein neuer Pfad neu generiert werden soll.

Abbildung 5.5: Architektur der FCL

66

5.2 STATISCHE METHODE (OHNE ZEITDIMENSION)

5.2.4 Pfadplanung

Bei der SAPF-Pfadplanung geht um die Vermeidung statischer Hindernisse durch einen

einzelnen Agenten. Der informierte RRT*-Algorithmus wird verwendet, um einen kolli-

sionsfreien Pfad in einer vorgegebenen Umgebung zu generieren. Im Unterschied dazu

beschäftigt sich die MAPF mit der Vermeidung von Kollisionen zwischen mehreren Agen-

ten. Die zur SAPF-Problemlösung generierten Pfade werden als Pfadkollisionsmodell im

Octree gespeichert, damit in der sequenziellen MAPF die Pfade anderer Agenten vermie-

den werden können.

Algorithmus 9 dient der Pfadplanung in der statischen Methode für Agenten i im Rahmen

dieser Arbeit. Als Input sind der Startpunkt s
i
, der Zielpunkt g

i
, die 3D-Belegungskarte

ε und die maximale Planungszeit Tmax vorgegeben. Als Output generiert der Algorith-

mus eine Reihe von Wegpunkten w
i
1,�, w

i
n für Agenten i, die Startpunkt und Zielpunkt

diskret verbinden, so dass gilt: w
i
1 � s

i
und w

i
n � g

i
. Außerdem bilden die Wegpunk-

te einen kollisionsfreien Pfad. Das bedeutet, dass keine benachbarten Punkte, die durch

eine gerade Linie verbunden sind, mit Hindernissen kollidieren. Zuerst werden die FCL-

Kollisionsmodelle initialisiert(Zeile 1). Dann wird der informierte RRT* verwendet, um

einen Pfad von s
i

nach g
i

zu finden. Die Funktion FCL.collide() beurteilt, ob der Pfad

mit die Hindernissen kollidiert (Zeile 4). Ist der Pfad kollisionsfrei, wird er in PathOctree

gespeichert. Am Ende gibt der Algorithmus die Wegpunkte w
i

und das Octree τ
i

zurück.

Algorithm 9: SAPF statischer Methode

Input: Startpunkt s
i
, Zielpunkt g

i
für Agenten i " r1,�, Nx, 3D-Belegungskarte

ε, maximale Planungszeit Tmax

Output: Wegpunkte w
i
� twi1,�, w

i
nz für Agenten i, τ

i

1 MapOctree ζ � ε, PathOctree τ
i
� o, FCL.Drohne � FCL.Sphere(R),

runningTime t ;

2 for t & Tmax do

3 w
i
�InformedRRT*�si, gi�;

4 if !FCL.collide�wi, ζ� then

5 τ
i
� w

i
;

6 break;

7 end

8 end

9 return τ
i
, w

i
;

Algorithmus 10 beschreibt die Darstellung der Pfadplanung für mehrere Agenten. Es

gibt insgesamt i Agenten, und für jeden Agenten gibt es einen Startpunkt s
i

und einen

67

5 METHODEN

Zielpunkt g
i
. Die sequenzielle Pfadplanung geschieht folgendermaßen: Für den ersten

Agenten gibt es bei der Planung keinen anderen Pfad (Zeile 5). Für nachfolgende Agen-

ten muss der zuvor geplante Pfad berücksichtigt werden (Zeilen 7-11). Daher ist eine

Kollisionsprüfung zwischen dem Pfad des i -ten Agenten mit den vorherigen i � 1 Pfa-

den durchzuführen. Tritt eine Kollision auf, muss der Pfad des i -ten Agenten neu ge-

plant werden (Zeile 10). Wenn die Pfadplanung für alle i Agenten fertig ist, gibt der

Algorithmus die Wegpunkte W � tw1
,�, w

Nz zurück. Da jeder Pfad die Kollisions-

prüfung für alle anderen Pfade durchführt, gibt es keine Pfadkollisionen. Schließlich wer-

den die überschneidungsfreien Pfade generiert, die aus diskreten Wegpunkten bestehen.

Algorithm 10: MAPF statischer Methode

Input: Startpunkt s
i
, Zielpunkt g

i
für Agenten i " r1,�, Nx, 3D-Belegungskarte

ε, maximale Planungszeit tmax

Output: Wegpunkte W � tw1
,�, w

Nz
1 runningTime t;

2 for t & tmax do

3 for i� 1 to N do

4 if i � 1 then

5 SAPF(s
i
, g

i
);

6 else

7 SAPF(s
i
, g

i
);

8 for j � �i � 1� to 1 do

9 while FCL.collide�wi, τ j� do

10 SAPF(s
i
, g

i
);

11 j � �i � 1�;
12 end

13 end

14 end

15 end

16 end

17 return W � tw1
,�, w

Nz;

5.2.5 Trajektoriengenerierung

Nach der Pfadplanung werden aus diskreten Wegpunkten überschneidungsfreie Pfade ge-

neriert. Das bedeutet, dass die Pfade nicht kontinuierlich sind und der Abstand zwischen

Zuständen im Pfad sehr groß sein kann. Außerdem berücksichtigen die Pfade keine dy-

namischen oder kinematischen Einschränkungen. Dies bedeutet, dass es zwischen den

68

5.2 STATISCHE METHODE (OHNE ZEITDIMENSION)

Wegpunkten scharfe Kurven geben kann, wie Abbildung 6.20 zeigt. Deshalb ist es not-

wendig, dass die Pfade durch Interpolation und Glättung optimiert werden. Hier soll dazu

die B-Spline-Funktion verwendet werden, die für den vorliegenden Fall vorteilhafte Eigen-

schaften besitzt, nämlich die lokale Steuerung und die konvexe Hülleneigenschaft, um eine

ausführbare Trajektorie zu generieren [64] [65] [66].

Bei n� 1 Kontrollpunkten p0, p1,�, pn und Knotenvektoren t0, t1,�, tm ist die B-Spline-

Kurve s�t� vom Grad k wie folgt definiert:

s�t� � n

=
i�0

piNi,k�t� (5.11)

wobei Ni,k�t� die B-Spline-Mischfunktion des Grades k ist, die rekursiv wie folgt ausge-

wertet werden kann:

Ni,0�t� �
~��������

1 wenn ti $ t $ ti�1

0 sonst
(5.12)

Ni,k�t� � t � ti
ti�k � ti

Ni,k�1�t� � ti�k�1 � t
ti�k�1 � ti�1

Ni�1,k�1�t� (5.13)

Die Gesamtzahl der Knoten sollte m � 1 � n � k � 2 erfüllen. Der einheitliche B-Spline

ist eine spezielle Art von B-Spline, dessen Knoten gleichmäßig verteilt sind. Angenom-

men, der Knotenvektor wird mit der Äquidistanz Wt getrennt. Das halboffene Intervall�ti, ti�1� wird als i -te Knotenspanne bezeichnet. Jede Knotenspanne wird mit u �
t�ti
Wt

normalisiert und für die i -te Knotenspanne sind nur k�1 Mischfunktionen ungleich Null,

entsprechend k�1 Kontrollpunkten pi�k,�, pk. Die k�1 Kontrollpunkte werden als Koor-

dinatenmatrix einer Kontrollpunktspanne gestapelt Pi�k �� �pi�kpi�k�1�pi�T " R�k�1��3
.

Sei j � i � k, können die Position und die Ableitungen der B-Spline-Kurve, die der j -ten

Kontrollpunktspanne entsprechen, wie folgt bewertet werden:

dsj�u�
dl�u� �

1�Wt�l db
T

dl�u�MkPj (5.14)

Dabei bezeichnet l die Ordnung der Ableitung (l � 0 ist die Position), b � �1uu
2
�u

k�T "
Rk�1

den Basisvektor, und Mk � �mi,j " R�k�1���k�1�� die Mischmatrix, wobei mi,j �

1

k!
� k

k�i
�<k

s�j��1�s�j�k�1
s�j

��k � s�k�i. Gemäß 5.14 kann die Bewertung der Ableitungen der

B-Spline-Kurve durch eine lineare Matrixmultiplikation in Bezug auf die Kontrollpunkt-

spanne Pj ausgedrückt werden. Im Rahmen dieser Methode wird ein quintischer einheit-

licher B-Spline (k � 5) verwendet, um die Kontinuität sicherzustellen [67] [68] [69] [70].

69

5 METHODEN

Die Diagramme in Abbildungen 5.6 zeigen den Optimierungsprozess durch B-spline. Zu-

erst werden die diskreten Wegpunkte als B-Spline-Kontrollpunkte bezeichnet. Entspre-

chend der Parametereinstellung werden einige Punkte zwischen jeweils zwei benachbarten

Wegpunkten interpoliert, um eine glatte Trajektorie zu formulieren (Abbildung 5.6 b)).

Dann wird die Steigung jedes Punktes auf der Kurve berechnet, um die kinodynamische

Machbarkeit der Trajektorie sicherzustellen. Aus den Diagrammen ist ersichtlich, dass

die endgültige Trajektorie durch die Kontrollpunkte verläuft. Die hinzugefügten Punkte

bergen jedoch ein potenzielles Kollisionsrisiko. Genau genommen sollte für jeden interpo-

lierten Punkt eine Kollisionserkennung durchgeführt werden. Um die Interpolation zu ver-

einfachen und die Effizienz zu verbessern, wird der Kollisionssicherheitsabstand so einge-

stellt, dass keine für die Interpolation ausgewählten Punkte diesen Abstand überschreiten.

Schließlich wird eine kollisionsfreie, kinodynamische und glatte Trajektorie generiert.

a) Diskrete Wegpunkte nach Pfadpla-
nung

b) Optimierung durch B-Spline c) Steigung der Kurve

Abbildung 5.6: Trajektorie Optimierung durch B-Spline

5.3 Dynamische Methode (mit Zeitdimension)

Das Hauptaugenmerk der statischen Methode ist darauf gerichtet, durch die MAPF-

Planung jede Überschneidung von Pfaden auszuschließen. Im Gegensatz dazu ist eine

Pfadüberschneidung mit der dynamischen Methode möglich, da hier neben den drei

räumlichen Dimensionen die zeitliche Dimension zur Verfügung steht, um Kollisionen

zu vermeiden. In diesem 4D-Scenario geht es darum, jede Positionsüberlappung zwischen

Agenten zu einem bestimmten Zeitpunkt zu verhindern. Wie bereits erwähnt, stellt die

zusätzliche Dimension extrem hohe Anforderungen an die Recheneffizienz des Algorith-

mus. In dynamischen 4D-Methode werden der sichere Flugkorridor (SFC), der relativ

sichere Flugkorridor (RSFC) zur Kollisionsvermeidung und die Dummy-Agenten zur Ef-

fizienzoptimierung verwendet. Im Folgenden wird die dynamische Methode im Detail be-

70

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

trachtet, beginnend mit ihrer Architektur. Dann werden die Kernmodule der Methode vor-

gestellt, nämlich die initiale Planung, der sichere Flugkorridor (SFC), der relativ sichere

Flugkorridor (RSFC), Dummy-Agenten und die Zeitzuweisung. Die sogenannten Modu-

le wie Kartenkonstruktion, Trajektoriengenerierung und Trajektorienverfolgung gleichen

denen der statischen Methode und werden hier nicht erneut betrachtet.

5.3.1 Architektur der dynamischen Methode

Die Architektur der dynamischen Methode ist in Abbildung 6.15 dargestellt. Die blau-

en Blöcke repräsentieren die Module, und die orangen Blöcke sind die Algorithmen oder

Ergebnisse der Module. Die Pfeile geben die Richtung des Informationsflusses an. Zu-

erst wird aus dem Kartenkonstruktionsmodul die OctoMap erstellt, um die Umgebung zu

modellieren. Anhand der OctoMap generiert der MAPF-Algorithmus ECBS eine initia-

le Trajektorie für jeden Agenten. Basierend auf dieser initialen Trajektorie werden zwei

weitere Flugkorridore generiert, nämlich der sichere Flugkorridor und der relativ sichere

Flugkorridor, um Kollisionen zwischen Hindernissen und Agenten zu vermeiden. Nach

der Kombination beider Korridore wird ein absolut kollisionsfreier Korridor hergestellt.

Anschließend werden virtuelle Agenten im Dummy-Agenten-Modul eingeführt, um die

Komplexität der Optimierung zu verringern. Danach werden die Zeitsegmente für die

Trajektorie im Zeitzuweisungsmodul verteilt. Am Ende entstehen realisierbare Trajekto-

rien mit zeitlicher Anpassung.

Abbildung 5.7: Architektur dynamischer Methode

5.3.2 Initiale Planung

Den Planungsprozess für einen einzelnen Quadrotor haben viele Forscher in die initiale

Trajektorienplanung und die Verbesserung der Trajektorie unterteilt, und diese zweistufige

Methode soll hier auf mehrere Agenten angewendet werden [22][71]. In Anlehnung daran

71

5 METHODEN

wird die initiale Trajektorie der dynamischen Methode zuna¨chst mithilfe eines graph-

basierten MAPF-Algorithmus geplant. Die initiale Flugbahn des i -ten Quadrotors p
i
init

wird als Reihe von Wegpunkten definiert, die Start- und Zielposition in einem Diagramm

verbinden. In der MAPF ist die Kostenfunktion die Summe der Länge aller Flugbahnen.

Es gibt viele MAPF-Algorithmen, wie HCA* [72], M* [73], CBS [11]. Unter diesen wird

der Enhanced CBS (ECBS) [54] als diskreter Planalgorithmus für die initiale Flugbahn

gewählt, da er in kurzer Zeit eine suboptimale Lösung unter der Grenze der Lösungskosten

finden kann. Mit anderen Worten, wird es garantiert, dass die Kosten der Trajektorie

niedriger als das cw-fache der optimalen Kosten sind, wobei cw ein benutzerdefinierter Be-

grenzungsfaktor ist[54]. Um das graphbasierte ECBS zu verwenden, übersetzt der diskrete

Planer die 3D-Belegungskarte OctoMap in eine 3D-Gitterkarte. Nach der Übersetzung be-

rechnet ECBS eine diskrete Trajektorie, die Start- und Zielpunkte verbindet. Wenn die

Start- und Zielpunkte sich nicht auf der 3D-Gitterkarte befinden, werden die nächsten

Gitterpunkte statt der ursprünglichen Punkte verwendet.

Eine initiale Trajektorie des i -ten Quadrotors, p
i
init � π

i
� tπi0,�, π

i
Mz, ist definiert als

Pfad, der die folgenden Bedingungen (5.15) für alle m � 0,�,M und i j j erfüllt:

π
i
0 � s

i
, π

i
M � g

i
(5.15)

�πim�1, πiM�h C
i
obs L F (5.16)

�πi,jm�1, πi,jm � = Ci,j
inter � o (5.17)

Wobei �πim�1, πiM� � tαπim�1 � �1 � α�πim ¶ 0 & α & 1z ein Liniensegment zwischen den

Wegpunkten π
i
m�1 und π

i
m ist, und π

i,j
m � π

j
m � π

i
m. (11) zeigt, dass die initiale Flugbahn

frei von Hindernissen ist, und (12) bedeutet, dass die Agenten nicht mit anderen Agenten

kollidieren, wenn sich alle Agenten mit konstanter Geschwindigkeit entlang ihrer initialen

72

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

Trajektorien bewegen.

Algorithm 11: Trajektorienplanung

Input: Startpunkt s
i
, Zielpunkt g

i
für Agenten i " r1,�, Nx, 3D-Belegungskarte

ε

Output: Gesamtflugzeit T , Trajektorie p
i�t� für Agenten i " r1,�, Nx,

t " �0, T �
1 π � �π1

, , π
N�� planInitialTraj��s¾i, g¾i�, ε� ;

2 for i� 1 to N do

3 SFC
i
� �SFCi

0,�, SFC
i
M�� buildSFC�πi, ε�;

4 for j � i � 1 to N do

5 RSFC
i,j
� �RSFCi,j

0 ,�, RSFC
i,j
M �� buildRSFCπ

i
, π

j
;

6 end

7 end

8 p
0�t�,�, p

N�t�� trajOpt�π, SFC¾i, RSFC¾i,j%i�;
9 T, p

0�t�,�, p
N�t�� timeScale�p0�t�,�, p

N�t��;
10 return T, p

o�t�,�, p
N�t�;

5.3.3 Der sichere Flugkorridor (SFC)

Der sichere Flugkorridor (SFC) wird bei der Pfadplanung benutzt, um den freien Raum

in einer Karte zu modellieren [74]. Der SFC besteht aus verbunden konvexen Mengen und

kann als lineare Ungleichungen zur Vermeidung von Hindernissen bei der quadratischen

Programmierung (QP) dargestellt werden [75] [74] [59] [76]. Der SFC des i -ten Quadrotors,

SFC
i
1,�, SFC

i
M , ist als Sammlung konvexer Mengen definiert, die nicht mit Hindernissen

kollidieren und sequenziell verbunden sind.

SFC
i
m h C

i
obs " F, m � 1,�,M (5.18)

SFC
i
m = SFC

i
m�1 j o, m � 1,�,M � 1 (5.19)

C
i
obs ist das Hinderniskollisionsmodell für den i -ten Quadrotor, das als Kugel mit dem

Radius r
i

definiert ist, der den Sicherheitsabstand zwischen einem Hindernis und einem

Quadrotor darstellt. Die Trajektorie des i -ten Quadrotors ist frei von Hindernissen, wenn

für beliebiges t " �0, T � existiert m " r1,�,Mx, so dass p
i�t� " SFC

i
m, wobei T die

Gesamtflugzeit ist. Zuerst wird der SFC nach der Achsensuchmethode mit einer vordefi-

nierten Größe an jedem Wegpunkt der initialen Trajektorie konstruiert. Mit Ausnahme

der Start- und Zielpunkte erweitern die Wegpunkte sich in der vorherigen Wegpunkt-

richtung, um zwei konvexe Mengen zu verbinden. Alle Wegpunkte außer Start- und Ziel-

73

5 METHODEN

punkten werden auf der 3D-Gitterkarte ausgerichtet, so dass die Bedingung 5.14 erfüllt

ist. Danach erweitert sich jeder Korridor in alle anderen Achsenrichtungen, bis er einen

maximalen freien Raum hat. Schließlich werden die duplizierten Korridore gelöscht.

Algorithm 12: Erstellung des SFC (buildSFC)

Input: initiale Trajektorie π
i
, 3D-Belegungskarte ε

Output: SFC SFC
i
� �SFCi

1,�, SFC
i
M�

1 D � r�x,�y,�zx;

2 for m� 1 to M do

3 SFC
i
m � �πim�1, πim�;

4 while D is not empty do

5 for µ in D do

6 if SFC
i
m cannot expand to direction µ then

7 D � D ¯ µ;

8 end

9 end

10 expand SFC
i
m to all directions in D;

11 end

12 end

Algorithmus 12 zeigt die Erstellung des SFC. Der SFC wird auf �πim�1, πim� initialisiert,

um die Bedingung() zu erfüllen (Zeile 3). Für alle Richtungen wird geprüft, ob der SFC

erweiterbar ist (Zeilen 5-9), und eine Länge der Erweiterung ist vorgegeben (Zeile 10).

Dieser Algorithmus gibt konvexe Mengen zurück, die der Definition von SFC entsprechen.

5.3.4 Der relativ sichere Flugkorridor(RSFC)

Im Vergleich zum SFC wird der relativ sichere Flugkorridor(RSFC) vorgestellt, um einen

freien Raum für Ausweichmanöver zwischen zwei Agenten zu modellieren. Unter Verwen-

dung der Eigenschaft des Bernsteinpolynoms, wandelt der RSFC die nichtkonvexen Be-

schränkungen in lineare Beschränkungen um. Somit kann dieses Verfahren eine stückweise

Polynomtrajektorie optimieren, indem QP nur einmal verwendet wird, und es garantiert,

dass eine praktikable Lösung von QP keine Kollision und keinen Deadlock verursacht.

Die RSFC zwischen dem i -ten und dem j -ten Agenten sind als konvexe Mengen wie folgt

definiert, RSFC
i,j
1 ,�, RSFC

i,j
M , die nicht in den Kollisionsbereich zwischen dem i -ten

74

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

und dem j -ten Agent eindringen und sequenziell verbunden sind.

RSFC
i,j
m = C

i,j
inter � o, m � 1,�,M (5.20)

RSFC
i,j
m hRSFC

i,j
m�1 j o, m � 1,�,M � 1 (5.21)

C
i,j
inter ist ein Interkollisionsmodell, das rechteckiges Parallel-flach zum Körperrahmen des

i -ten Quadrotors ausgerichtet ist, zwischen dem i -ten und dem j -ten Quadrotor. Es ist

zu beachten, dass C
i,j
inter für jedes Agentenpaar variieren kann, was bedeutet, dass es

unterschiedliche Größen von Quadrotoren handhaben kann. In dieser Arbeit werden die

Länge und Breite von C
i,j
inter als 2�ri � r

j� und eine Höhe als 2cdw�ri � r
j� zugewiesen,

um den Downwash-Effekt zu berücksichtigen, wobei cdw der Downwash-Koeffizient ist.

Die Trajektorie des j -ten Quadrotors kollidiert nicht mit dem i -ten Quadrotor, wenn für

beliebiges t " �0, T � existiert m " r1,�,Mx, so dass �pj�t� � pi�t�� " RSFCi,j
m .

Die Konstruktion des RSFC ist in den Abbildungen 6.6 und 6.9 beschrieben, zur Ver-

einfachung dargestellt in einem 2D-Raum. Zunächst werden die initialen Trajektorien in

relative Trajektorien für jedes Agentenpaar konvertiert. Die relative Trajektorie des i -ten

und des j -ten Quadrotors π
i,j

kann durch Subtrahieren entsprechender Wegpunkte von

zwei initiale Trajektorien erhalten werden, wie in Abbildung 6.6 dargestellt. Es gibt sechs

RSFC-Kandidaten in Richtung �x,�y,�z, um die Anzahl der Entscheidungsvariablen

im Optimierungsschritt zu reduzieren, und jeder RSFC-Kandidat RSFCµ ist wie folgt

definiert:

RSFCµ �

~��������
tp ¶ p � nµ % ri � rjz , µ � �x,�y

tp ¶ p � nµ % cdw�ri � rj�z , µ � �z
(5.22)

nµ ist ein Einheitsvektor in Richtung µ " r�x,�y,�zx. Für jeden Wegpunkt π
i,j �k� in

π
i,j

, kann jeder RSFC ausgewählt sein, wenn die folgende Bedingung erfüllt ist:

π
i,j �k� � nµ % 0 (5.23)

Dann wird ein geeigneter RSFC aus den RSFC-Kandidaten ausgewählt. Redundante

RSFC-Übergänge entlang der Wegpunkte können jedoch die Anzahl der Polynomseg-

mente und die Rechenzeit erhöhen. Abbildung 6.9 zeigt ein Beispiel dafür. Zur Erstellung

einer glatten relativen Trajektorie ist es erforderlich, dass zwei Polynomsegmente als Er-

satz für die relative Trajektorie dienen, wenn es einen Übergang von RSFC entlang der

Wegpunkte gibt (z. B. Abbildung 6.7 RSFC
i,j
1 � RSFC

i,j
2). Aber wenn es drei Übergänge

75

5 METHODEN

a) Initiale Trajektorien des i-ten (rot) und j -ten (blau)
Quadrotors

b) Relative initiale Trajektorie des j -ten Quadrotors in Be-
zug auf den i-ten Quadrotor

Abbildung 5.8: Die relativ initiale Trajektorie [12]

gibt (wie in Abbildung 6.8 RSFC
i,j
1 � RSFC

i,j
2 � RSFC

i,j
3 � RSFC

i,j
4), müssen zwei

zusätzliche Polynomsegmente geplant werden. Der Greedy-Algorithmus (13) kommt zur

Anwendung, um die Anzahl der RSFC-Übergänge zu minimieren.

a) RSFC Konstruktion b) Beispiel für einen redundanten RSFC-Übergang.

Abbildung 5.9: RSFC [12]

76

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

Algorithm 13: Erstellung des RSFCs (buildRSFC)

Input: π
i
, π

j
, 3D-Belegungskarte ε

Output: RSFC RSFC
i,j

1 lmax � max�size�πi�, size�πj�� ;

2 RSFC
i,j
� o;

3 for ¾µ " r�x,�y,�zx do

4 initialize sµ to 0 ;

5 end

6 for n� 1 to lmax do

7 for ¾µ " r�x,�y,�zx do

8 if �πj �n� � πi �n�� � nµ % 0 then

9 if n � 1 then

10 sµ �n�� 1;

11 end

12 sµ �n�� sµ �n � 1� � 1

13 end

14 end

15 end

16 n� lmax;

17 µM � argmaxµ�sµ �n��;
18 RSFC

i,j
.push front (RSFCµM);

19 n� n � sµM �n�;
20 while n % 0 do

21 µM � argmaxµj�µM �sµ �n��;
22 RSFC

i,j
.push front(RSFCµM);

23 n� n � sµM �n�;
24 end

25 return RSFC
i,j

;

Der Algorithmus empfängt π
i

und π
j

als Eingabe und gibt RSFC
i,j

zurück. RSFC
i,j

ist als leeres Array initialisiert (Zeile 2), und sµ ist als ein Array aller Nullen mit der

Länge lmax initialisiert (Zeile 4-5). Nach der Initialisierung überprüft der Algorithmus

die RSFC-Kandidaten mit (5.23) und speichert das Ergebnis in sµ (Zeilen 8-13). Am

Ende des relativen Pfads wird ein RSFC-Kandidat gefunden, der die maximale Anzahl

von Wegpunkten enthält, und der Kandidat wird im RSFC
i,j

eingefügt (Zeilen 17-18).

Danach geht es zum letzten Wegpunkt (Zeile 19). Der Algorithmus findet wieder das

Maximum des Kandidaten, bis es den Startpunkt des relativen Pfades erreicht (Zeilen

77

5 METHODEN

20-24). Es ist zu beobachten, dass sich der neue Kandidat nicht auf der dem vorherigen

Kandidaten gegenüberliegenden Seite befinden darf, da Quadrotoren nicht durch einen

leeren Raum zwischen zwei gegenüberliegenden Kandidaten springen können (Zeile 21).

5.3.5 Dummy-Agenten

Das gleichzeitige Optimieren aller Kontrollpunkte von Polynomen kann ein Skalierbar-

keitsproblem verursachen, da die zeitliche Komplexität des QP-Lösers O�n3� beträgt. Hier

wird eine effiziente sequenzielle Optimierungsmethode unter Verwendung von Dummy-

Agenten vorgestellt. Algorithmus 14 zeigt den Prozess der sequenziellen Optimierung.

Algorithm 14: Trajektorieoptimierung (trajOpt)

Input: initiale Trajektorie π, SFC
¾i

, RSFC
¾i,j%i

Output: Trajektorie p
i�t�

1 pdmy�t� � �p0dmy�t�,�, p
N
dmy�t��� planDummy(π);

2 for l � 1 to Nb do

3 b� agents in l
th

batch ;

4 p
b�t�� solveQP�πb, SFCb

, RSFC
¾i,j%i

, p
¾i�b
dmy �t�� ;

5 pdmy�t�� p�t�;
6 end

7 return p
o�t�,�, p

N�t�;
Zunächst werden die Trajektorien für Dummy-Agenten pdmy�t� unter Verwendung der

folgenden Kontrollpunkte c
i
m,k erstellt (Zeile 1):

c
i
m,k �

~��������������

π
i
m�1, k � 0,�, φ � 1

π
i
m, k � n � �φ � 1�,�, n

x " �πim�1, πim� , else

(5.24)

Als Nächstes werden die Agenten in Nb Stapeln aufgeteilt und das QP-Problem für den

78

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

Stapel b sieht wie folgt aus (Zeilen 3-4) [61]:

Minimieren c
T
Qc, c " R

N

Nb
M�n�1�

(5.25)

Erfüllen Aeqc � beq, Aeq " R
N

Nb
�M�1�φ�N

Nb
M�n�1�

(5.26)

c
i
m,k � Kontrollpunkte von p

i
dmy�t�, ¾ � b,m, k (5.27)

c
i
m,k " SFC

i
m, ¾ " b,m, k (5.28)

c
j
m,k � c

i
m,k " RSFC

i,j
m , ¾i, j % i,m, k (5.29)

Die Anzahl der Ungleichheitsbeschränkungen ist �N � 1

2
� N
Nb
� 1�� N

Nb
M�n � 1�. pidmy�t�

ist die Trajektorie für den i -ten Dummy-Agenten. Zuletzt werden die Trajektorien von

Dummy-Agenten durch die zuvor geplanten Trajektorien ersetzt und die Trajektorie für

den nächsten Stapel wird geplant (Zeile 5).

a) Einstellen von Dummy-Agenten b) Planen für einen Stapel

c) Ersetzen der Dummy-Agenten durch den vorherigen Sta-
pel

d) Planen für den nächsten Stapel

Abbildung 5.10: Dummy-Agenten [13]

Abbildung 6.14 zeigt den Gesamtprozess der Dummy-Agenten (Nb � 2). Dummy-Agenten

werden als schwarze Kreise dargestellt, und Agenten im aktuellen Stapel werden als farbi-

ge Kreise dargestellt. Für jede Iteration werden die Trajektorien für den aktuellen Stapel

79

5 METHODEN

(Farblinie) geplant, die die Trajektorien von Dummy-Agenten (schwarze Linie) vermeidet.

Für jede Iteration werden die Dummy-Agenten mit Ausnahme der Agenten im aktuellen

Stapel eingestellt (Abbildung 6.10). Dann plant der Algorithmus die Pfade für den ak-

tuellen Stapel, um Dummy-Agenten zu vermeiden (Abbildung 6.11). Danach werden die

Agenten im aktuellen Stapel bei der nächsten Iteration als Dummy-Agenten verwendet

(Abbildung 6.12). Am Ende der Iteration werden kollisionsfreie Trajektorien ohne Ver-

klemmung gefunden, da alle Agenten so geplant sind, dass der vorherige Stapel vermieden

wird (Abbildung 6.13). Diese sequenzielle Methode mit Dummy-Agenten kann eine bes-

sere Skalierbarkeit erzielen, da die hohe zeitliche Komplexität des QP-Lösers vermieden

wird. Wenn die Anzahl der Agenten zunimmt, während die Anzahl der Entscheidungs-

variablen von QP beibehalten wird, indem die Anzahl des Stapels sich erhöht. Darüber

hinaus ist es nach [13] erwiesen, dass die Methode keinen Optimierungsfehler aufgrund

nicht realisierbarer Einschränkungen verursacht.

5.3.6 Zeitzuweisung

Nach der Konstruktion von SFC und RSFC ist es erforderlich, dass das Zeitsegment der

stückweisen Polynomtrajektorie dem entsprechenden SFC und RSFC zugeordnet wird.

p
i
m�t� ist das m-te Segment der Trajektorie p

i�t� in t " ttim�1, timz. Das Zeitsegment des

i -ten Quadrotors ist folgendermaßen definiert:

t
i
s � �ti0,�, t

i
M� (5.30)

Für diese Arbeit werden die Trajektorien aller Agenten so eingestellt, dass sie das gleiche

Zeitsegment ts haben, um die konvexe Hülleneigenschaft des Bernstein-Basispolynoms zu

verwenden. Dies kann jedoch zu vielen Entscheidungsvariablen führen und somit die Re-

chenzeit verlängern. Daher wird das folgende Verfahren verwendet, um die Anzahl von

Entscheidungsvariablen zu verringern. Algorithmus 15 zeigt den Prozess zum Finden ei-

nes Zeitsegmentteils. Der Algorithmus empfängt SFC oder RSFC und die initialen oder

relativen Trajektorien als Eingaben und sucht nach dem mittleren Wegpunkt zwischen

dem Schnittpunkt zweier aufeinanderfolgender konvexer Mengen (Zeilen 11-13). Danach

zeichnet der Algorithmus den Index dieses mittleren Wegpunkts auf, um ihn als den Ort

zuzuweisen, an dem der SFC- oder RSFC-Übergang stattfindet (Zeile 14). Mit anderen

Worten, der m-te SFC oder RSFC wird vor dem Zeitpunkt �n� count
2

&��tstep zugewiesen,

und der m+1 -ten SFC oder RSFC wird nach dem Zeitpunkt �n� count
2

&�� tstep zugewie-

sen, wobei n � count
2

&� der Index des mittleren Wegpunktes zwischen dem Schnittpunkt

der m-ten und m+1 -ten konvexen Mengen ist. Im SFC-Fall ist es garantiert, dass in

zwei aufeinander folgenden SFC ein Wegpunkt vorhanden ist, da der Wegpunkt über die

80

5.3 DYNAMISCHE METHODE (MIT ZEITDIMENSION)

Achsensuchmethode mit SFC verbunden ist. Im RSFC-Fall gibt es jedoch möglicherweise

keinen Wegpunkt in einer Kreuzung zwischen zwei aufeinanderfolgenden RSFC (Zeile 17).

In diesem Fall wird der Integerindex nicht mehr verwendet, da er eine nicht realisierbare

Einschränkung darstellen kann, wenn SFC und RSFC sich gleichzeitig ändern. Stattdes-

sen steht eine heuristische Methode zur Verfügung, die den RSFC-Übergang zeitverzögert,

um die gleichzeitige Änderung von SFC und RSFC zu vermeiden (Zeile 18). Dies kann

die Anzahl der Entscheidungsvariablen erhöhen, aber die Erfolgsrate nimmt beim Finden

einer realisierbaren Flugbahn zu. Dieser Algorithmus gibt immer ein Array mit einer ma-

ximalen Größe von 2lmax zurück, so dass garantiert ist, dass die stückweise Trajektorie

maximal 2lmax Segmente aufweist.

Algorithm 15: Zeitsegment zuweisen (findTimeSegment)

Input: initiale Trajektorie π oder relative Trajektorie π
i,j

, Array von

sequenziellen konvexen Mengen C, Zeitschritt tstep

Output: Zeitsegment tsp

1 tsp � o;

2 m� 1;

3 for n� 1 to lmax do

4 if m ' size�C� then

5 break;

6 end

7 if π �n� " �C �m� = C �m � 1�� then

8 count� 1;

9 while π �n � count� " �C �m� = C �m � 1�� and n � count & lmax do

10 count� count � 1;

11 tsp.push back(�n � count
2

&� � tstep);
12 n� n � count

2
&;

13 m� m � 1;

14 end

15 end

16 else if π �n� " C �m � 1� then

17 tsp.push back(�n � 0.5� � tstep);
18 m� m � 1;

19 end

20 end

21 return tsp;

Nach der Erstellung des Zeitsegments werden alle Zeitsegmente kombiniert und sortiert.

81

5 METHODEN

Das bedeutet, dass doppelte Elemente gelöscht werden und das Gesamtzeitsegment ge-

neriert wird, indem die Startzeit und die Gesamtflugzeit an jedes Ende des kombinierten

Arrays angehängt werden. Diese Methode kann die Größe des gesamten Zeitsegments re-

duzieren, indem die Elemente des Zeitsegmentteils so weit wie möglich überlappt werden.

Durch Vergleichen von tsp und ts werden SFC und RSFC dem Zeitsegment zugeordnet.

82

6 Simulation und Evaluation

In diesem Kapitel werden die Simulation und Evaluation unter Verwendung des vor-

ab erarbeiteten Absicherungskonzeptes sowie der implementierten Verarbeitungsarchitek-

tur beschrieben. Im Detail erläutert werden sollen hierbei die Architektur der Simula-

tion, die Simulation der statischen Methode und der dynamischen Methode sowie die

Evaluation der beiden Methoden. Zuerst wird der Konstruktionsprozess der Simulation

vorgestellt, nämlich die Verbindung zwischen ROS-Framework, PX4-Flugsteuerung und

Gazebo-Simulator. Darauf folgt eine kurze Einführung in die Simulation der beiden Me-

thoden. Den Abschluss bilden die Bewertung und Evaluation der Simulationsergebnisse

unter Berücksichtigung verschiedener Faktoren, z. B. Rechenzeiten, Robustheit und Lei-

stungsfähigkeit.

6.1 Simulation

Um die vom Pfadplaner generierten Trajektorien zu demonstrieren, ist eine Tracking-

Steuerung notwendig, damit die Drohne gemäß dieser vorhandenen Trajektorie in Be-

wegung gehalten werden kann. Deshalb werden zunächst zwei Verfahren zur Tracking-

Steuerung im Rahmen dieser Arbeit vorgestellt, nämlich die lineare Tracking-Steuerung

und die PID-Tracking-Steuerung. Dem folgt eine Übersicht zur Architektur und zum In-

formationsfluss der Demonstration.

6.1.1 Trajektorienfolger

Der lineare Trajektorienfolger basiert auf der Differenz zwischen der Zieltrajektorienposi-

tion und der aktuellen Trajektorienposition, um die die Geschwindigkeit und Richtung der

Bewegung zu bestimmen. Der Pfadpunkt auf der Trajektorie wird als Referenzpunkt pr des

Folgers verwendet, und die vom Simulator gemessene Position wird als Echtzeitposition p0

verwendet. Entsprechend der Genauigkeit scannt der Knoten die beiden Positionen mit ei-

ner festgelegten Frequenz. Abbildung 6.1 zeigt die lineare Steuerung, wobei v � �vx, vy, vz�
die Geschwindigkeit von po nach pr ist. vx, vy, vz sind die Geschwindigkeitskomponenten

auf der X-Achse, der Y-Achse und der Z-Achse.

83

6 SIMULATION UND EVALUATION

Abbildung 6.1: Der lineare Trajektorienfolger

Die euklidische Abstand ^s zwischen p0 und pr ist gleich pr � p0. Die Durchschnitts-

geschwindigkeit wird mit Vd bezeichnet. Dann werden die Geschwindigkeitskomponenten

vx, vy, vz wie folgt berechnet:

^ s �
Õ�xr � x0�2 � �yr � y0�2 � �zr � z0�2 (6.1)

v
2
�

Õ
v2x � v

2
y � v

2
z (6.2)

vx �
xr � x0
Ws

� Vd �
xr � x0Ô�xr � x0�2 � �yr � y0�2 � �zr � z0�2 � Vd (6.3)

vy �
yr � y0
Ws

� Vd �
yr � y0Ô�xr � x0�2 � �yr � y0�2 � �zr � z0�2 � Vd (6.4)

vz �
zr � z0
Ws

� Vd �
zr � z0Ô�yr � y0�2 � �yr � y0�2 � �zr � z0�2 � Vd (6.5)

Im Unterschied zum linearen Trajektorienfolger basiert der PID-Trajektorienfolger auf

nicht nur auf der Positionsdifferenz, sondern auch auf dem Geschwindigkeitsfehler, damit

die Position bei Störeinflüssen möglichst gut eingehalten wird [77] [78] [79]. In Abbildung

6.2 ist die PID-Regelung dargestellt. Der PID-Regler ist von den Standard-Reglern am

anpassungsfähigsten, verhindert bei konstantem Sollwert eine bleibende Regelabweichung

bei Führungs- und Störgrößensprung und kann Verzögerungen der Regelstrecke kompen-

sieren und damit die Regelstrecke vereinfachen. Durch die Integration von Positionsfehlern

und die Regelung von Geschwindigkeitsfehlern wird die geregelte Beschleunigung ausge-

rechnet. Bei der Positionssteuerung wird bei einem Sollwertsprung für die Position meist

ein Referenzprofil für Geschwindigkeit und Beschleunigung generiert. Entsprechend dem

Sollwertverlauf und einem linearisierten Streckenverhalten wird eine Beschleunigungsvor-

steuerung berechnet, die ohne weitere Stellgrößenanteile die linearisierte Strecke entspre-

chend den Referenzprofilen positionieren würde. Der eigentliche Regler, also die anderen

Stellgrößenanteile, müssen dann nur noch Nichtlinearitäten und unbekannte äußere Ein-

flüsse ausregeln.

84

6.1 SIMULATION

Abbildung 6.2: PID-Trajektorienfolger

6.1.2 Simulation der statischen Methode

Die Architektur der statischen Methode ist in Abbildung 6.3 dargestellt. Die Simula-

tion und Visualisierung bestehen darin, die Kommunikation und Informationsverarbei-

tung zwischen verschiedenen Modulen im Rahmen des ROS-Frameworks zu realisieren.

Im OctoMap-Modul wird eine Belegungskarte generiert, die Hindernisse unterschiedli-

cher Form und Volumen enthält. Durch den OctoMap-Knoten wird die Belegungskarte

zum ROS-Knoten multi agents Planner 3d gesendet, damit der Pfadplaner die Hinder-

nisse erkennen kann. Außerdem wird die Belegungskarte im Kartenkonverter-Modul nach

World -file umgesetzt, um die Belegungskarte in Gazebo zu modellieren. Im Planermodul

wird eine kollisionsfreie Trajektorie für jede Drohne geplant, und die Trajektorien wer-

den durch ROS-Knoten multi agents Planner 3d zu ROS-Knoten trajectory controller uav

weitergeleitet. Der Trajektorienfolger empfängt die Trajektorien und sendet die aktuel-

len Positionskontrollpunkte und Geschwindigkeit an Gazebo durch MAVROS und PX4.

Gleichzeitig werden die aktuelle Bewegungszustände jeder Drohne von Gazebo an den

Trajektorienfolger zurückgegeben, damit der Regler den Fehler reduzieren kann. Im Gaz-

abo Gui wird die Bewegung der Drohne angezeigt. Es ist sichtbar zu prüfen, ob die Drohne

die Hindernisse vermeiden kann.

6.1.3 Simulation der dynamischen Methode

Abbildung 6.4 zeigt die Architektur der dynamischen Methode, die der statischen Metho-

de ähnelt. Der Unterschied liegt im Planermodul, in dem der 4D-Planer die Trajektorien

für jede Drohne berechnet. Der ROS-Knoten multi agents Planner 4d empfängt die Be-

legungskarte aus den OctoMap-Knoten. Nach der dynamischen Pfadplanung werden die

Trajektorien an trajectory controller uav gesendet. Der Gazebo-Simulator erhält die ak-

85

6 SIMULATION UND EVALUATION

Abbildung 6.3: Architektur der Simulation der 3D-Methode

tuellen Positionskontrollpunkte und Daten zur Geschwindigkeit und Beschleunigung von

MAVROS. Abschließend werden die Belegungskarte und der Bewegungszustand der Droh-

ne in Gazebo simuliert.

6.2 Evaluation

In diesem Abschnitt werden unterschiedliche Faktoren der beiden Algorithmen ana-

lysiert. Untersucht werden dazu die Pfadkosten, Erfolgsraten, Rechenzeiten, Anzahl

der Drohnen, Hindernisdichte und Robustheit, um die beiden Methoden zu ver-

gleichen, ihre jeweiligen Vor- und Nachteile aufzuzeigen und den Anwendungsbe-

reich jeder Methode zu erläutern. Zur Untersuchung der Abhängigkeit von der Hin-

dernisdichte werden verschiedene 3D-Belegungskarten mit unterschiedlicher Anzahl

86

6.2 EVALUATION

Abbildung 6.4: Architektur der Simulation der 4D-Methode

von Hindernissen generiert. Für diese Arbeit ist die 3D-Belegungskarte im Raumr�x, y, z� ¶¶x " ��20, 20� , y " ��20, 20� , z " �0, 10�x �m� definiert. Die Diagramme in

Abbildung 6.5 zeigen Räume mit zylindrischen Hindernissen mit einer Höhe von 7 m und

einem Durchmesser von 0,1 m bis 0,4 m in unterschiedlicher Anzahl und damit Dichte,

von 50 (niedrige Dichte) bis 600 (extreme Dichte).

Zur Analyse der Qualität der Trajektorie wird der Begriff die Glätte des Pfades G wie

folgend 6.6 dargestellt. Die Idee besteht darin, die Dreiecke zu betrachten, die durch

aufeinanderfolgende Pfadsegmente si�2, si�1, si gebildet werden, und den Winkel zwischen

diesen Segmenten unter Verwendung des Satzes von Pythagoras zu berechnen [80]. Dann

wird der Außenwinkel für den berechneten Winkel durch die Pfadsegmente normalisiert

und trägt zur Pfadglätte bei. Dabei ist ai der Abstand von si�2 bis si�1, bi der Abstand

von si�1 bis si und ci der Abstand von si�2 bis si. Für einen geraden Pfad ist die Glätte

87

6 SIMULATION UND EVALUATION

a) 50 zylindrisches Hindernisse (niedrig Dichte) b) 100 zylindrisches Hindernisse (mittlere Dichte)

c) 200 zylindrisches Hindernisse (hohe Dichte) d) 400 zylindrisches Hindernisse (sehr hohe Dichte)

e) 600 zylindrisches Hindernisse (extreme Dichte)

Abbildung 6.5: 3D-Belegungskarte mit unterschiedlicher Anzahl von Hindernissen

gleich 0.Je näher der Wert an 0 liegt, desto glatter ist der Pfad.

G �

n�1

=
i�2

����
2�π � arccos�a2i�b2i�c2i

2aibi
��

ai � bi

���
2

(6.6)

Die vorgeschlagenen Methoden werden in C++ ausgeführt und auf einem PC mit Ubun-

tu 16.04 mit Intel Xeon(R) CPU E3-1230 V2 3.30GHz × 8 und Grafikkarte Quadro

600/PCIe/SSE2 simuliert. Das Gazebo 7 und Firmwire 1.8.2 werden verwendet, um den

Bewegungszustand der Drohne in der tatsächlichen Umgebung zu modellieren und zu

88

6.2 EVALUATION

visualisieren.

6.2.1 Evaluation der statischen Methode

Zur Evaluation der statischen Methode werden die Pfadkosten, die Rechenzeiten, die An-

zahl der Drohnen, die Pfadglätte und die Hindernisdichte betrachtet. In der statischen

Methode gibt es eine Zeitfunktion, die ein Zeitlimit bzw. die Anzahl der Sekunden defi-

niert, die der informierte RRT* Algorithmus für die Planung verwenden darf. Je länger

die Zeit ist, desto mehr Zustände werden vom Algorithmus abgetastet. Zuerst wird das

Zeitlimit von 0,1 bis 40 Sekunden festgelegt, um die Beziehung zwischen Zeitlimit und die

Qualität der Lösung zu analysieren. Abbildung 6.6 zeigt die Pfadkosten in Abhängigkeit

vom Zeitlimit in der Karte mit 200 Hindernissen. Aufgrund der zufälligen Stichprobe des

Algorithmus nimmt die Pfadlänge nicht notwendigerweise linear mit der Zeit ab, aber

der Trend zeigt, dass die Pfadlänge mit der Zeit eine signifikante Abnahme aufweist.

Wenn die Planungszeit zu lang ist, nimmt allerdings auch die Reaktionsgeschwindigkeit

des gesamten Systems ab. Als Ausgleich zwischen beiden Faktoren wird das Zeitlimit in

statischer Methode auf eine Sekunde gesetzt. In Abbildung 6.7 stellt den Zusammenhang

Abbildung 6.6: Die Beziehung zwischen Zeitlimit und Routenkosten

zwischen der Rechenzeit und der Anzahl der Drohnen dar. Dabei wird deutlich, dass

die Rechenzeit mit der Anzahl der Drohnen steigt. Für jede Planung ist die Rechenzeit

gleich Planungszeit plus Optimierungszeit. Die Planungszeit wurde wie oben beschrie-

ben auf eine Sekunde gesetzt, und die Optimierungszeit ist abhängig von die Pfadlänge.

89

6 SIMULATION UND EVALUATION

Die Rechenzeit für 64 Drohnen ist gleich der Planungszeit für 64 Drohnen plus Opti-

mierungszeit für 64 Pfade. Die Planungszeit für 64 Drohnen ist 64 Sekunden und die

Optimierungszeit ist in diesem Fall 14 Sekunden. Um die Rechenzeit zu reduzieren, gibt

es zwei Möglichkeiten, nämlich die Reduktion der Planungszeit bzw. des Zeitlimits oder

die Verbesserung der Optimierungseffizienz. Letztere ist in dieser Arbeit abhängig von den

Parametern der B-Spline-Kurve, nämlich maximale Schritte smoothSteps und minimale

Änderungen pathMinChange. Abbildung 6.8 skizziert den Zusammenhang zwischen der

Optimierungszeit und den B-Spline Parametern. Die Optimierungszeit nimmt mit abneh-

mender pathMinChange und zunehmender smoothSteps zu. Abbildungen 6.9 zeigt die

Pfade nach der B-Spline-Optimierung mit unterschiedlichen Werten für pathMinChange

und smoothSteps. Die Diagramme a) bis d) zeigen, dass die Glätte des Pfades mit mehr

Optimierungsschritten zunimmt. Die Diagramme e) bis h) zeigen den Prozess der konti-

nuierlichen Optimierung der Glätte des Pfades mit pathMinChange von 0.5 bis 0.001.

Daraus lässt sich die Schlussfolgerung ziehen, dass kleinere pathMinChange und mehr

smoothSteps zwar die Glätte des Pfades verbessern, dabei aber die Optimierungszeit

verlängern. In der folgenden Simulation wird pathMinChange auf 0.001 und smoothSteps

auf 5 konfiguriert.

Abbildung 6.7: Rechenzeit und Anzahl der Drohnen

Abbildung 6.10 beschreibt die Glätte von 32 Drohnenpfaden, wenn pathMinChange �

0.001 und smoothSteps � 5 beträgt. Gemäß der Grafik liegt die Glätte der Pfade zwi-

schen 0,1 und 0,6 und die Glätte aller 32 Pfade ist in diesem Intervall gleichmäßig verteilt.

Das bedeutet, dass die sequenzielle Planung von der ersten bis zur 32. Drohne keine ne-

gativen Auswirkungen auf die Qualität des Pfades hat, wenn der Optimierungsparameter

90

6.2 EVALUATION

a) Die Optimierungszeit und die maximale Schritte b) Die Optimierungszeit und die minimale Änderungen

Abbildung 6.8: Die Optimierungszeit für 8 Drohnen mit B-Spline

gleich konfiguriert ist. Priorisierte Drohnen haben jedoch immer eine größere Auswahl an

planbarem Raum, da die später geplanten Drohnenpfade die zuvor geplanten Pfade als

Hindernisse berücksichtigen müssen. Deshalb wird der planbare Raum, der für nachfol-

gende Drohnen (niedrige Priorität) verfügbar ist, mit fortschreitender Planung kleiner.

Theoretisch ist die Chance einer Lösung umso höher, je höher die Priorität der Drohne

ist. Je niedriger der Rang der Drohnen im zeitlichen Ablauf, desto kleiner ist der Raum,

den sie wählen können, und desto geringer ist die Wahrscheinlichkeit dafür, eine bessere

Pfadlösung zu erhalten. Dieser Punkt wird in Kapitel 6.2.3 ausführlich beschrieben.

Abbildung 6.11 skizziert die Ergebnisse der Simulation, um die Abhängigkeit der Hin-

dernisdichte zu analysieren. Das Zeitlimit ist 1 Sekunde und die Optimierungsparameter

lauten pathMinChange � 0.001, smoothSteps � 5. Mit zunehmender Anzahl der Hinder-

nisse in der Karte von 50 bis 600 steigen die Rechenzeit, die Pfadkosten und die Glätte.

Dies zeigt, dass bei einer höheren Dichte von Hindernissen in der Umgebung auch die

geplante Pfadlänge zunimmt, ebenso wie die für den Pfad erforderliche Optimierungszeit.

6.2.2 Evaluation der dynamischen Methode

Zur Evaluation der dynamischen Methode werden der Mindestabstand zwischen den Droh-

nen, die Rechenzeiten, die Anzahl der Drohnen und die Hindernisdichte betrachtet. Wie

in Kapitel 5.3.5 erläutert, werden Dummy-Agenten verwendet, um die sequenzielle Op-

timierungseffizienz zu verbessern. Deswegen ist der Stapel Nb ein wichtiger Faktor für

dynamische Methode. Wenn es N Drohnen zur Pfadplanung gibt und der Stapel gleich

Nb ist, beträgt die Anzahl der Pfade für jede Runde zur Optimierung N

Nb
. Die Effizienz

der Algorithmusoptimierung kann durch Ändern der Größe von Nb bewertet werden. Ab-

bildung 6.12 zeigt die Rechenzeit der Pfadplanung für N � 16, 32, 64, 128 Drohnen in

91

6 SIMULATION UND EVALUATION

a) smoothSteps � 1, pathMinChange � 0.001 b) smoothSteps � 5, pathMinChange � 0.001

c) smoothSteps � 10, pathMinChange � 0.001 d) smoothSteps � 50, pathMinChange � 0.001

e) smoothSteps � 5, pathMinChange � 0.5 f) smoothSteps � 5, pathMinChange � 0.1

g) smoothSteps � 5, pathMinChange � 0.01 h) smoothSteps � 5, pathMinChange � 0.001

Abbildung 6.9: Optimierungszeit für 8 Drohnen mit B-Spline

92

6.2 EVALUATION

Abbildung 6.10: Die Glätte von 32 Drohnen Pfade

Abbildung 6.11: Evaluation zur statischen Methode in Abhängigkeit von Hindernisdichte

Abhängigkeit von Nb. Wenn Nb � 1 beträgt, wird die sequenzielle Optimierungsmethode

nicht angewendet und alle Pfade werden gleichzeitig optimiert. In diesem Fall ergeben

sich jeweils maximale Rechenzeiten für N � 16, 32, 64, 128 Drohnen. Wenn Nb von 1 auf 2

wechselt, wenn also die sequenzielle Optimierungsmethode zur Anwendung kommt, nimmt

die Rechenzeit stark ab. Wenn Nb von 2 weiter steigt, nimmt die Rechenzeit langsam ab.

Wenn Nb � N , erhöht die Rechenzeit sich wieder, denn in dieser Situation ist die Opti-

mierungszeit jedes Schritts zwar sehr kurz, aber die Anzahl der Optimierungsschritte ist

zu hoch, und das Produkt der beiden steigt. Mit anderen Worten, in diesem Fall ist der

dominierende Faktor für die endgültige Rechenzeit nicht mehr die Optimierungszeit jedes

93

6 SIMULATION UND EVALUATION

Schrittes, sondern die Anzahl der Optimierungsschritte. Wie aus dem Diagramm hervor-

geht,, eignet sich die sequenzielle Optimierung Nb) 2 sehr gut für eine hohe Zahl von

Drohnen (N � 64, 128, . . .). In folgender Simulation wird der Stapel Nb auf N

Nb
� 4 gestellt,

was bedeutet, dass vier Pfade in einem Stapel optimiert werden. Abbildung 6.13 fasst die

Abbildung 6.12: Rechenzeit für Pfadplanung in Abhängigkeit von Nb, 200 Hindernissen

Beziehung zwischen der Rechenzeit und der Anzahl der Drohnen (2, 4, 8, 16, 32, 64, 128)

zusammen. Mit der Verdoppelung der Anzahl von Drohnen erhöht sich die Rechenzeit

schnell. Abbildung 6.14 stellt die Rechenzeit, den Mindestabstand und die Pfadkosten

von 64 Drohnen in Abhängigkeit zur Hindernisdichte (50 bis 600 Hindernisse) dar. Der

Mindestabstand ist der kleinste Abstand zwischen Drohnen während ihres Fluges gemäß

dem geplanten Pfad. Die Pfadkosten sind die Summe der Pfadlängen aller 64 Drohnen. Es

ist deutlich zu erkennen,dass dass in der Karte mit zunehmender Dichte von Hindernissen

der Mindestabstand zwischen Drohnen über 1 Meter bleibt. Mit zunehmender Anzahl von

Hindernissen erhöhen sich die Pfadkosten und die Rechenzeit entsprechend. Abbildung

6.15 zeigt den Pfadplanungs- und Simulationsprozess in der dynamischen Methode für 16

Drohnen. Die Startpunkte und Endpunkte sind auf �0, 0, 5�, �0, 0, 6�, �2, 0, 5�, �2, 0, 6�, . . .
und �16, 16, 5�, �16, 16, 6�, �16, 0, 5�, �16, 0, 6�, . . . eingestellt. Die farbigen Kugeln re-

präsentieren die Drohnen und die Größe der Kugeln repräsentiert die geometrische Größe

der Drohne. Zur Simulation der dynamischen Methode wird die maximale Geschwindig-

keit der Drohne auf 2m/s eingestellt.

94

6.2 EVALUATION

Abbildung 6.13: Rechenzeit für Pfadplanung in Abhängigkeit von der Anzahl der Drohnen

Abbildung 6.14: Rechenzeit und Pfadkosten für Pfadplanung (64 Drohnen) in Abhängigkeit von der
Hindernisdichte

6.2.3 Bewertung der beiden Methoden

Im Folgenden werden die beiden in diesem Artikel untersuchten Methoden unter ver-

schiedenen Aspekten verglichen, z. B. Pfadkosten, Rechenzeit und Hindernisdichte. An-

schließend werden die Ergebnisse der beiden Planungsmethoden anhand einiger spezieller

Karten analysiert. Abschließend werden die Vor- und Nachteile der beiden Methoden

95

6 SIMULATION UND EVALUATION

a) b)

c) d)

Abbildung 6.15: Pfadplanung und Simulation für 16 Drohnen

zusammengefasst. Zur Evaluation der beiden Methoden basieren alle Simulationsdaten

auf derselben Karte mit demselben Start- und Endpunkt. Abbildungen 6.16 und 6.17

zeigen die Rechenzeit und gesamten Pfadkosten zunehmender Anzahl an Drohnen unter

Verwendung der beiden Methoden. Aus der Grafik 6.16 ist es deutlich, dass die Berech-

nungseffizienz der dynamischen Methode(4D) höher als die der statischen Methode(3D)

ist, insbesondere wenn die Anzahl der Drohnen relativ groß ist. Das liegt daran, dass

die statische Methode(3D) eine sequenzielle Planung verwendet und für jede Drohne eine

feste Rechenzeit braucht. Wenn die Anzahl der Drohnen exponentiell zunimmt, nimmt

auch die Rechenzeit exponentiell zu. Im Gengensatz zur 3D-Methode verwendet die 4D-

Methode eine globale Planung, die auf dem ECBS-Algorithmus und dem MAPF-Problem

basiert. Außerdem werden die Trajektorien aller Drohnen in Nb Stapeln optimiert, sodass

die Rechenzeit mit exponentiellem Wachstum der Anzahl der Drohnen einen linearen

Wachstumstrend zeigt. Abbildung 6.17 bildet die Pfadkosten der beiden Methoden mit

zunehmender Anzahl von Drohnen ab. Wenn die Anzahl der Drohnen nicht groß ist,

N & 16, unterscheiden sich die durch die beiden Methoden erzeugten Pfadkosten nicht

wesentlich. Wenn jedoch die Anzahl der Drohnen groß ist, N % 16, weist die statische

96

6.2 EVALUATION

Methode Vorteile auf. Die erzeugte Pfadlänge ist geringer als die der 4D-Methode, und

die relative Differenz vergrößert sich mit zunehmender Anzahl von Drohnen. Das liegt

daran, dass die 3D-Methode versucht, für jede Drohne einen suboptimalen Pfad in der

Karte zu finden. Die dynamische Methode ist darauf ausgerichtet, eine praktikable Lösung

für alle Drohnen zu finden. Zur Evaluation der beiden Methoden in Abhängigkeit von

Abbildung 6.16: Vergleich der Rechenzeit, 200 Hindernisse in der Karte

Abbildung 6.17: Vergleich der Pfadkosten, 200 Hindernisse in der Karte

der Hindernisdichte dienen Abbildungen 6.18 und 6.19. Nimmt die Anzahl der Hinder-

nisse auf der Karte zu, steigen deutlich erkennbar bei meiden Methoden die Pfadkosten

und Rechenzeit. Die Wachstumsrate der Rechenzeit ist bei der 4D-Methode höher als bei

97

6 SIMULATION UND EVALUATION

der 3D-Methode. Dies zeigt auch, dass die Anpassungsfähigkeit der 4D-Methode an die

Umgebung mit dichten Hindernissen nicht so gut wie die der 3D-Methode ist.

Abbildung 6.18: Vergleich der Pfadkosten in Abhängigkeit von Hindernisdichte

Abbildung 6.19: Vergleich der Rechenzeit in Abhängigkeit von Hindernisdichte

Zur Bewertung der Robustheit der beiden Methoden dienen die Karten in Abbildungen

6.20. In der Mitte des dargestellten Raumes liegt eine Wand (Länge: 40 m, Höhe: 10 m,

Breite: 2 m) mit einem Fenster (Länge: 2 m, Höhe: 2 m, Breite: 2 m), die den Raum

98

6.2 EVALUATION

in zwei Hälften teilt. Vier Drohnen können nur durch das Fenster von einer Seite des

Raumes auf die andere fliegen. Die Abbildung a) zeigt, dass bei einem Zeitlimit von eine

Sekunde die 3D-Methode nur drei Pfade finden kann. Ein Pfad scheitert, da er nicht

durch das Fenster führt. Bei einem Zeitlimit von drei Sekunden finden alle vier Drohnen

einen Pfad. Im Gegensatz dazu werden vier mögliche Pfade bei der 4D-Methode bereits

nach 2,48 Sekunden gefunden. Mit abnehmender Größe des Fensters nehmen in beiden

Methoden die erforderliche Berechnungszeit zur Lösungsfindung sowie die Ausfallrate zu.

Ist die Fläche des Fensters kleiner als die Querschnittsfläche, die vier Drohnen gleichzeitig

aufnehmen kann, funktioniert die 3D-Methode nicht mehr. Die 4D-Methode kann jedoch

so lange wirksam bleiben, bis die Fläche des Fensters kleiner als die Fläche ist, die eine

einzelne Drohne benötigt. Wegen der zeitlichen Anpassung hat die 4D-Methode in extrem

engen Kanälen eine höhere Erfolgsrate als die 3D-Methode.

a) Pfadplanung für vier Drohnen mit 3D-Methode, Zeitli-
mit 1 Sekunde

b) Pfadplanung für vier Drohnen mit 3D-Methode, Zeitli-
mit 3 Sekunden, Pfadkosten � 212.559

c) Pfadplanung für vier Drohnen mit 4D-Methode, Pfadko-
sten � 217.888, Draufsicht

d) Pfadplanung für vier Drohnen mit 4D-Methode, Seiten-
ansicht

Abbildung 6.20: Pfadplanung für vier Drohnen mit 3D und 4D Methode

Aus der Gegenüberstellung der zwei Methoden lassen sich folgende Schlussfolgerungen

ziehen:

v Vorteile der 3D-Methode:

99

6 SIMULATION UND EVALUATION

t Pfadkosten: Es können suboptimale Pfade für Drohnen gefunden werden. Mit

zunehmender Planungszeit können kürzere Pfade berechnet werden.

t Sicherheit: Keine geplanten Pfade kreuzen sich, was den Sicherheitsfaktor der

Drohnen während des Fluges verbessert.

t Rechenaufwand: Die Zeitdimension muss nicht berücksichtigt werden, was den

Rechenaufwand verringert.

t Kinematische Anforderungen: Keine Anforderung für Geschwindigkeit und Be-

schleunigung jeder Drohne.

v Nachteile der 3D-Methode:

t Rechenzeit: Bei hoher Anzahl von Drohnen (N ' 32) ist die erforderliche Rechen-

zeit deutlich höher als unter der 4D-Methode.

t Raumnutzung: Da keine Überschneidung von Pfaden zulässig ist, ist die Raum-

nutzungsrate auf der Karte niedrig.

v Vorteile der 4D-Methode:

t Rechenzeit: Bei exponentiell steigender Anzahl der Drohnen erhöht sich die erfor-

derliche Planungszeit nur linear.

t Raumnutzung: Durch zeitliche Anpassungen verbessert diese 4D-Methode die

Raumnutzungsrate.

v Nachteile der 4D-Methode:

t Pfadkosten: Bei hoher Zahl von Drohnen (N ' 16) sind die Pfadkosten höher als

in der 3D-Methode.

t Sicherheit: Die Zeit aller Drohnenflüge muss synchronisiert werden. Andernfalls

besteht die Gefahr einer Kollision.

t Kinematische Anforderung: Alle Drohnen haben die gleiche Geschwindigkeit.

v Anwendungsintegration:

t Die 3D-Methode eignet sich für die Pfadplanung mit großer Entfernung und nied-

riger Hindernisdichte, z. B. bei der Warenlieferung.

t Die 4D-Methode eignet sich für die Pfadplanung bei geringer Entfernung und hohe

Hindernisdichte, z. B. für die unternehmensinterne Logistik.

100

7 Zusammenfassung und Ausblick

Im Folgenden werden zunächst die Ergebnisse dieser Arbeit als Antworten auf die

zu Beginn als Schwerpunkte aufgeworfenen Fragen vorgestellt. Anschließend werden

Möglichkeiten zur Weiterentwicklung der Ergebnisse aufgezeigt. Zusätzlich werden

Ansätze vorgestellt, mit denen die im Teilprojekt (Intrafly) definierten Forschungsaspekte

weiterverfolgt werden können.

7.1 Fazit

Im Rahmen dieser Arbeit wurde ein Softwaremodul zur dreidimensionalen Routenplanung

einer variablen Anzahl von Flugrobotern entwickelt. Vorgegeben war dabei stets eine Um-

gebungskarte in Form einer OctoMap sowie die Start- und Zielpunkte der einzelnen Robo-

ter. Zur Implementierung der vorgestellten Software wurden das Robot Operating System

(ROS), die Softwarebibliotheken FCL und MAVLink sowie die Optimierungslösung Cplex

verwendet, wie in Kapitel 3 erläutert. Zur Simulation wurden der Gazebo-Simulator und

die PX4-Flugsteuerung vorgestellt. In Kapitel 4 wurden die in diesem Artikel verwendete

Algorithmen dargestellt. Der RRT-Algorithmus und die von diesem abgeleiteten Algorith-

men RRT* und informierter RRT* wurden für die Pfadplanung einer einzelnen Drohne

verwendet. Im Gegensatz dazu dienten die Algorithmen A*, CBS und ECBS zur Pfad-

planung für mehrere Drohnen.

Basierend auf der Erweiterung dieser beiden Arten von Algorithmen wurden zwei Metho-

den für die Planung kollisionsfreier sowie nach Flugstrecke optimierter roboterspezifischer

Trajektorien vorgestellt: eine statische 3D-Methode und eine dynamische 4D-Methode.

Zur Optimierung der Pfade dienten die am Ende von Kapitel 4 erläuterten Grundlagen

der Bernsteinpolynome. Die entwickelte und in Kapitel 5 beschriebene Verarbeitungsar-

chitektur der beiden Methoden zeichnet sich durch einen modularen Aufbau aus, wobei

die einzelnen Module unter Verwendung des ROS-Framework kommunizieren und unter-

schiedliche Module zusammenarbeiten. Abschließend wurde auf Basis der entwickelten

Pfadplanung sowie der implementierten Verarbeitungsarchitektur ein Demonstrator auf-

gebaut und getestet, beschrieben in Kapitel 6. Die von einer 3D-Belegungskarte erfassten

Umgebungsdaten bilden hierbei die Eingangsdaten für die beide Methoden, die es den

Drohnen ermöglichen, Hindernissen im Raum dynamisch auszuweichen und Kollisionen

101

7 ZUSAMMENFASSUNG UND AUSBLICK

zwischen Drohnen zu vermeiden. Zusätzlich wurden die aus dem Pfadplaner erstellten

Trajektorien über die Steuerung eines Trajektorienfolgers an den Simulator gesendet. Die

Evaluation der beiden Methoden konzentrierte sich auf die Pfadkosten, die Rechenzeit,

die Robustheit und die Hindernisdichte. Zum Schluss wurden die Anwendungsintegration

sowie die Vor- und Nachteile der beiden Methoden zusammengefasst. Grundsätzlich sind

die in dieser Arbeit entwickelten Methoden geeignet zur Lösung des MAPF-Problems

und zur Trajektorienoptimierung. Die Evaluation zeigt die Leistungsfähigkeit der zwei

Methoden in unterschiedlichen Karten und mit einer undefinierten Anzahl von Drohnen.

7.2 Ausblick

Nachfolgend werden zunächst die aktuellen Einschränkungen sowie die Verbesserungs- und

Entwicklungspotenziale des im Rahmen der vorliegenden Arbeit realisierten Konzepts her-

ausgearbeitet. Anschließend sollen Möglichkeiten vorgestellt werden, um den Pfadplaner

unter Verwendung weiterer Optimierungsmethoden, zusätzlicher Daten und Informatio-

nen sowie weiterführender Algorithmen zu verbessern und für die industrielle Anwendung

zu ertüchtigen.

7.2.1 Aktuelle Einschränkungen

Die Bewertung der beiden in diesem Artikel genannten Methoden befindet sich jedoch

erst in der Simulationsphase. Für die reale Flugversuche müssen noch die folgende Punkte

beachtet werden.

v Kartenkonstruktion: In dieser Arbeit werden die Umgebungen mit einer Belegungs-

karte modelliert, und die Hindernisse in der Karte werden durch Quader dargestellt.

Die Kollisionserkennung in den Algorithmen basiert ebenfalls auf der Belegungskar-

te. In realen Umgebungen sind die Formen von Hindernissen komplexer. Deswegen

ist eine Kartenkonstruktion mit höherer Genauigkeit für reale Flugversuche erfor-

derlich.

v Trajektorienfolger: In Simulationen werden ideale Umgebungen betrachtet. In

tatsächlichen Umgebungen müssen auch Windwiderstand, die Kommunikationsla-

tenz zwischen Drohne und Host sowie Sensormessfehler berücksichtigt werden. Der

Trajektorienfolger in dieser Arbeit ist nur für die Simulationsphase geeignet; für

reale Flugversuche bedarf es eines Trajektorienfolgers mit höherer Genauigkeit.

v Zeitsynchronisation: Die 4D-Methode basiert auf zeitlicher Synchronisation, was

bedeutet, dass die Zeitbeschriftungen aller Drohnen konsistent sein müssen. Bei

102

7.2 AUSBLICK

realen Flugversuchen ist es schwierig, sicherzustellen, dass die Zeit aller Drohnen

synchronisiert wurde.

v Anzahl der Drohnen: Die 3D-Methode hat eine Begrenzung für die Anzahl der Droh-

nen.

7.2.2 Weiterentwicklung der Methoden

Für eine Weiterentwicklung des vorgestellten Moduls empfiehlt sich eine Verbesserung des

Algorithmus zur MAPF-Problemlösung mit einer besseren Raumnutzung. Dabei sollten

möglichst alle entwickelten Kollisionsvermeidungs- und Datenweiterleitungsmethoden un-

tersucht werden. Ein Vorschlag für die Verbesserung der Raumnutzung der 3D-Methode

besteht im Modellieren einer dynamischen Belegungskarte. Dies bedeutet, dass für alle

Kuben in der Karte nicht nur die Ortsbezeichnungen mit dreidimensionalen Koordina-

ten, sondern auch die Zeitbezeichnungen verwendet werden, so dass der Pfadplaner die

Positionen und die Zeitpunkte der Kuben abfragen kann, um festzustellen, ob der Kubus

in diesem Zeitpunkt frei ist. Auch besteht die Möglichkeit, die 3D-Methode und 4D-

Methode zu integrieren, um die Vorteile beider Methoden zu nutzen und die Nachteile

zu eliminieren. Für die globale Planung würde dabei die 3D-Methode zuerst ausgeführt.

Die 4D-Methode würde aufgerufen, um lokale Kollisionen zu vermeiden. Eine Integration

dieser beiden Methoden klingt perfekt, aber die Synchronisation der Zeitdimension wäre

immer noch eine große Herausforderung. Um die Flexibilität des Algorithmus zu ver-

bessern, ließe sich die Methode eventuell um zusätzliche Entscheidungsoptionen für die

Agenten erweitern, damit die Drohnen nicht nur durch Bewegung Kollisionen vermeiden,

sondern auch schweben, warten und ihren Flug verzögern können.

Sollte es in Zukunft möglich sein, autonome Flugroboter mit einer den industriellen Nor-

men entsprechenden Flugsteuerung auszustatten und auch die Software allezeit sicher und

redundant zu gestalten, werden sich in den nächsten Jahren vor allem in Industrieunter-

nehmen vielfältige Einsatzbereiche herausstellen. Vor allem hinsichtlich des wachsenden

Digitalisierungsbewusstseins, aber auch im Hinblick auf Effizienzvorteile und ein sichereres

Arbeitsumfeld, werden autonom fliegende Multikopterflotten in zukünftigen Produktions-

und Lagerstätten großen Einfluss haben. Sie bieten insbesondere durch ihre flexible Ein-

setzbarkeit, die Nutzung bisher ungenutzter Lufträume und die damit verbundene Schnel-

ligkeit deutliche Vorteile gegenüber bisher eingesetzten Technologien. Vor allem in einem

vollständig vernetzten Internet der Dinge kann ihr gesamtes Potenzial optimal genutzt

werden. So wird es in Zukunft möglich sein, Produkte nicht nur deutlich variabler und

auf den Kunden hin angepasst zu produzieren, sondern auch gesamte Fertigungslinien

durch geringere Produktions-, Stillstands- und Transportzeiten effizienter und schlanker

103

7 ZUSAMMENFASSUNG UND AUSBLICK

zu gestalten. Dadurch ließe sich der Ressourceneinsatz reduzieren und so die Fertigung

industrieller Güter nachhaltiger gestalten. Zusätzlich würde die Arbeitsumgebung für den

Menschen sicherer und bequemer.

104

Literaturverzeichnis

[1] Garrett-Glaser, Brian: Amazon Seeks FAA Approval for Prime Air

Drone Delivery, [EB/OL], https://www.aviationtoday.com/2019/08/09/

following-wing-ups-amazon-seeks-approval-prime-air-drone-delivery/

Accessed August 9, 2019.

[2] DHL: DHL launches its first regular fully-automated and in-

telligent urban drone delivery service, [EB/OL], https://

www.dpdhl.com/en/media-relations/press-releases/2019/

dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.

html Accessed May 16, 2019.

[3] Team, ArduPilot Dev: MAVLink Basics, [EB/OL], https://ardupilot.org/dev/

docs/mavlink-basics.html Accessed Juli 11, 2020.

[4] Lim, Jaeyoung: PX4 Offboard Control Using MAVROS on ROS, [EB/OL], https:

//www.codetd.com/article/2918485 Accessed August 28, 2018.

[5] Dronecode: PX4 Architectural Overview, [EB/OL], https://dev.px4.io/v1.9.

0/en/concept/architecture.html Accessed August 28, 2019.

[6] Dronecode: ROS with Gazebo Simulation, [EB/OL], https://dev.px4.io/v1.

9.0/en/simulation/ros_interface.html Accessed August 28, 2019.

[7] Hornung, Armin; Wurm, Kai M; Bennewitz, Maren; Stachniss, Cyrill; Bur-

gard, Wolfram: OctoMap: An efficient probabilistic 3D mapping framework based

on octrees, in Autonomous robots, 2013, Vol. 34 (3), S. 189–206.

[8] Pan, Jia; Chitta, Sachin; Manocha, Dinesh: FCL: A general purpose library for

collision and proximity queries, in , 2012, S. 3859–3866.

[9] Yuan, Zhenyuan: Motion Planning–Rapidly-exploring Random Tree (RRT),

[EB/OL], https://sites.psu.edu/zqy5086/project-1/ Accessed April 4, 2020.

[10] Karaman, Sertac; Frazzoli, Emilio: Incremental sampling-based algorithms for

optimal motion planning, in Robotics Science and Systems VI, 2010, Vol. 104 (2).

105

https://www.aviationtoday.com/2019/08/09/following-wing-ups-amazon-seeks-approval-prime-air-drone-delivery/
https://www.aviationtoday.com/2019/08/09/following-wing-ups-amazon-seeks-approval-prime-air-drone-delivery/
https://www.dpdhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://www.dpdhl.com/en/media-relations/press-releases/2019/dhl-launches-its-first-regular-fully-automated-and-intelligent-urban-drone-delivery-service.html
https://ardupilot.org/dev/docs/mavlink-basics.html
https://ardupilot.org/dev/docs/mavlink-basics.html
https://www.codetd.com/article/2918485
https://www.codetd.com/article/2918485
https://dev.px4.io/v1.9.0/en/concept/architecture.html
https://dev.px4.io/v1.9.0/en/concept/architecture.html
https://dev.px4.io/v1.9.0/en/simulation/ros_interface.html
https://dev.px4.io/v1.9.0/en/simulation/ros_interface.html
https://sites.psu.edu/zqy5086/project-1/

LITERATURVERZEICHNIS

[11] Gammell, Jonathan D; Srinivasa, Siddhartha S; Barfoot, Timothy D: Infor-

med RRT*: Optimal sampling-based path planning focused via direct sampling of an

admissible ellipsoidal heuristic, in , 2014, S. 2997–3004.

[12] Peter, Hart: Motion Planning–Rapidly-exploring Random Tree (RRT), [EB/OL],

https://de.wikipedia.org/wiki/A*-Algorithmus Accessed April 4, 2020.

[13] Sharon, Guni; Stern, Roni; Felner, Ariel; Sturtevant, Nathan R: Conflict-

based search for optimal multi-agent pathfinding, in Artificial Intelligence, 2015, Vol.

219, S. 40–66.

[14] Park, Jungwon; Kim, H Jin: Fast Trajectory Planning for Multiple Quadrotors

using Relative Safe Flight Corridor, in arXiv preprint arXiv:1909.02896, 2019.

[15] Park, Jungwon; Kim, Junha; Jang, Inkyu; Kim, H Jin: Efficient Multi-Agent Tra-

jectory Planning with Feasibility Guarantee using Relative Bernstein Polynomial, in

arXiv preprint arXiv:1909.10219, 2019.

[16] Hii, Michelle Sing Yee; Courtney, Patrick; Royall, Paul G: An evaluation of the

delivery of medicines using drones, in Drones, 2019, Vol. 3 (3), S. 52.

[17] Jung, Sunghun; Kim, Hyunsu: Analysis of amazon prime air uav delivery service,

in Journal of Knowledge Information Technology and Systems, 2017, Vol. 12 (2),

S. 253–266.

[18] Bamburry, Dane: Drones: Designed for product delivery, in Design Management

Review, 2015, Vol. 26 (1), S. 40–48.

[19] Park, Jiyoon; Kim, Solhee; Suh, Kyo: A comparative analysis of the environmental

benefits of drone-based delivery services in urban and rural areas, in Sustainability,

2018, Vol. 10 (3), S. 888.

[20] Aurambout, Jean-Philippe; Gkoumas, Konstantinos; Ciuffo, Biagio: Last mile

delivery by drones: an estimation of viable market potential and access to citizens

across European cities, in European Transport Research Review, 2019, Vol. 11 (1),

S. 30.

[21] Vlahovic, Nikola; Knezevic, Blazenka; Batalic, Petra: Implementing delive-

ry drones in logistics business process: Case of pharmaceutical industry, in World

Academy of Science, Engineering and Technology, International Journal of Soci-

al, Behavioral, Educational, Economic, Business and Industrial Engineering, 2016,

Vol. 10 (12), S. 3981–3986.

106

https://de.wikipedia.org/wiki/A*-Algorithmus

LITERATURVERZEICHNIS

[22] Yu, Jingjin; LaValle, Steven M: Optimal multirobot path planning on graphs:

Complete algorithms and effective heuristics, in IEEE Transactions on Robotics,

2016, Vol. 32 (5), S. 1163–1177.

[23] Čáp, Michal; Novák, Peter; Vokř́ınek, Jǐŕı; Pěchouček, Michal: Multi-agent

RRT*: Sampling-based cooperative pathfinding, in arXiv preprint arXiv:1302.2828,

2013.

[24] Hönig, Wolfgang; Preiss, James A; Kumar, TK Satish; Sukhatme, Gaurav S;

Ayanian, Nora: Trajectory planning for quadrotor swarms, in IEEE Transactions

on Robotics, 2018, Vol. 34 (4), S. 856–869.

[25] Ding, Xu Chu; Rahmani, Amir R; Egerstedt, Magnus: Multi-UAV convoy pro-

tection: An optimal approach to path planning and coordination, in IEEE transacti-

ons on Robotics, 2010, Vol. 26 (2), S. 256–268.

[26] Peng, Jung-Hao; Li, I-Hsum; Chien, Yi-Hsing; Hsu, Chen-Chien; Wang, Wei-

Yen: Multi-robot path planning based on improved D* Lite Algorithm, in , 2015,

S. 350–353.

[27] Boyarski, Eli; Felner, Ariel; Stern, Roni; Sharon, Guni; Tolpin, David;

Betzalel, Oded; Shimony, Eyal: ICBS: improved conflict-based search algorithm

for multi-agent pathfinding, in , 2015.

[28] Tang, Sarah; Kumar, Vijay: Mixed integer quadratic program trajectory generation

for a quadrotor with a cable-suspended payload, in , 2015, S. 2216–2222.

[29] Mellinger, Daniel; Kushleyev, Alex; Kumar, Vijay: Mixed-integer quadratic

program trajectory generation for heterogeneous quadrotor teams, in , 2012, S. 477–

483.

[30] Ritz, Robin; Müller, Mark W; Hehn, Markus; D’Andrea, Raffaello: Cooperative

quadrocopter ball throwing and catching, in , 2012, S. 4972–4978.

[31] Robinson, D Reed; Mar, Robert T; Estabridis, Katia; Hewer, Gary: An effi-

cient algorithm for optimal trajectory generation for heterogeneous multi-agent sy-

stems in non-convex environments, in IEEE Robotics and Automation Letters, 2018,

Vol. 3 (2), S. 1215–1222.

[32] Bareiss, Daman; Van den Berg, Jur: Reciprocal collision avoidance for robots

with linear dynamics using LQR-obstacles, in , 2013, S. 3847–3853.

107

LITERATURVERZEICHNIS

[33] Van Den Berg, Jur; Wilkie, David; Guy, Stephen J; Niethammer, Marc; Ma-

nocha, Dinesh: LQG-obstacles: Feedback control with collision avoidance for mobile

robots with motion and sensing uncertainty, in , 2012, S. 346–353.

[34] Zhou, Dingjiang; Wang, Zijian; Bandyopadhyay, Saptarshi; Schwager, Mac:

Fast, on-line collision avoidance for dynamic vehicles using buffered voronoi cells,

in IEEE Robotics and Automation Letters, 2017, Vol. 2 (2), S. 1047–1054.

[35] Yu, Jingjin; LaValle, Steven M: Optimal multi-robot path planning on graphs:

Structure and computational complexity, in arXiv preprint arXiv:1507.03289, 2015.

[36] Joseph, Lentin: Erratum to: Robot Operating System for Absolute Beginners: Ro-

botics Programming Made Easy, in , 2018, S. E1–E1.

[37] Foote, Tully: ROS Documentation, [EB/OL], http://wiki.ros.org/

Documentation Accessed Juli 11, 2020.

[38] O’Kane, Jason M: A gentle introduction to ROS, 2014.

[39] Koenig, Nathan; Howard, Andrew: Design and Use Paradigms for Gazebo, An

Open-Source Multi-Robot Simulator, in , 2004, S. 2149–2154.

[40] Aguero, C.E.; Koenig, N.; Chen, I.; Boyer, H.; Peters, S.; Hsu, J.; Gerkey,

B.; Paepcke, S.; Rivero, J.L.; Manzo, J.; Krotkov, E.; Pratt, G.: Inside

the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response,

in Automation Science and Engineering, IEEE Transactions on, 2015, Vol. 12 (2),

S. 494–506.

[41] Moravec, Hans; Elfes, Alberto: High resolution maps from wide angle sonar, in

, 1985, Vol. 2, S. 116–121.

[42] Yang, Liang; Qi, Juntong; Song, Dalei; Xiao, Jizhong; Han, Jianda; Xia, Yong:

Survey of robot 3D path planning algorithms, in Journal of Control Science and

Engineering, 2016, Vol. 2016.

[43] LaValle, Steven M: Rapidly-exploring random trees: A new tool for path planning,

in , 1998.

[44] Kuffner, James J; LaValle, Steven M: RRT-connect: An efficient approach to

single-query path planning, in , 2000, Vol. 2, S. 995–1001.

[45] Frazzoli, Emilio; Dahleh, Munther A; Feron, Eric: Real-time motion planning

for agile autonomous vehicles, in Journal of guidance, control, and dynamics, 2002,

Vol. 25 (1), S. 116–129.

108

http://wiki.ros.org/Documentation
http://wiki.ros.org/Documentation

LITERATURVERZEICHNIS

[46] Connell, Devin; Manh La, Hung: Extended rapidly exploring random tree–based

dynamic path planning and replanning for mobile robots, in International Journal of

Advanced Robotic Systems, 2018, Vol. 15 (3), S. 1729881418773874.

[47] Noreen, Iram; Khan, Amna; Habib, Zulfiqar: A comparison of RRT, RRT* and

RRT*-smart path planning algorithms, in International Journal of Computer Science

and Network Security (IJCSNS), 2016, Vol. 16 (10), S. 20.

[48] Liu, Ben; Feng, Wenzhao; Li, Tingting; Hu, Chunhe; Zhang, Junguo: A Variable-

Step RRT* Path Planning Algorithm for Quadrotors in Below-Canopy, in IEEE

Access, 2020, Vol. 8, S. 62980–62989.

[49] Shi, Yangyang; Li, Qiongqiong; Bu, Shengqiang; Yang, Jiafu; Zhu, Linfeng: Re-

search on Intelligent Vehicle Path Planning Based on Rapidly-Exploring Random

Tree, in Mathematical Problems in Engineering, 2020, Vol. 2020.

[50] La, Hung M; Sheng, Weihua; Chen, Jiming: Cooperative and active sensing in

mobile sensor networks for scalar field mapping, in IEEE Transactions on Systems,

Man, and Cybernetics: Systems, 2014, Vol. 45 (1), S. 1–12.

[51] Hart, Peter E; Nilsson, Nils J; Raphael, Bertram: A formal basis for the heuri-

stic determination of minimum cost paths, in IEEE transactions on Systems Science

and Cybernetics, 1968, Vol. 4 (2), S. 100–107.

[52] Hart, Peter E; Nilsson, Nils J; Raphael, Bertram: Correction to a formal basis

for the heuristic determination of minimum cost paths, in ACM SIGART Bulletin,

1972, (37), S. 28–29.

[53] DuchoĖ, Frantǐsek; Babineca, Andrej; Kajana, Martin; BeĖoa, Peter; Flo-

reka, Martin; Ficoa, Tomáš; Jurǐsicaa, Ladislav: Path planning with modified a

star algorithm for a mobile robot, in Procedia Engineering, 2014, Vol. 96, S. 59–69.

[54] Barer, Max; Sharon, Guni; Stern, Roni; Felner, Ariel: Suboptimal variants

of the conflict-based search algorithm for the multi-agent pathfinding problem, in ,

2014.

[55] Cohen, Liron; Uras, Tansel; Kumar, TK Satish; Koenig, Sven: Optimal and

Bounded-Suboptimal Multi-Agent Motion Planning, in , 2019.

[56] Szasz, Otto: Generalization of S. Bernstein’s polynomials to the infinite interval,

in J. Res. Nat. Bur. Standards, 1950, Vol. 45 (3), S. 239–245.

[57] Lorentz, George G: Bernstein polynomials, American Mathematical Soc., 2013.

109

LITERATURVERZEICHNIS

[58] Flores Contreras, Melvin Estuardo: Real-time trajectory generation for cons-

trained nonlinear dynamical systems using non-uniform rational b-spline basis func-

tions, in , 2008.

[59] Gao, Fei; Wu, William; Lin, Yi; Shen, Shaojie: Online safe trajectory generation

for quadrotors using fast marching method and bernstein basis polynomial, in , 2018,

S. 344–351.

[60] Preiss, James A; Hönig, Wolfgang; Ayanian, Nora; Sukhatme, Gaurav S:

Downwash-aware trajectory planning for large quadrotor teams, in , 2017, S. 250–

257.

[61] Mellinger, Daniel; Kumar, Vijay: Minimum snap trajectory generation and con-

trol for quadrotors, in , 2011, S. 2520–2525.

[62] Mueller, Mark W; Hehn, Markus; D’Andrea, Raffaello: A computationally effi-

cient motion primitive for quadrocopter trajectory generation, in IEEE Transactions

on Robotics, 2015, Vol. 31 (6), S. 1294–1310.

[63] Lei, Yao; Wang, Hengda: Aerodynamic Optimization of a Micro Quadrotor Aircraft

with Different Rotor Spacings in Hover, in Applied Sciences, 2020, Vol. 10 (4),

S. 1272.

[64] Unser, Michael; Aldroubi, Akram; Eden, Murray: B-spline signal processing. I.

Theory, in IEEE transactions on signal processing, 1993, Vol. 41 (2), S. 821–833.

[65] Prautzsch, Hartmut; Boehm, Wolfgang; Paluszny, Marco: Bézier and B-spline

techniques, Springer Science & Business Media, 2002.

[66] Berglund, Tomas; Brodnik, Andrej; Jonsson, H̊akan; Staffanson, Mats; So-

derkvist, Inge: Planning smooth and obstacle-avoiding B-spline paths for autono-

mous mining vehicles, in IEEE Transactions on Automation Science and Enginee-

ring, 2009, Vol. 7 (1), S. 167–172.

[67] Ding, Wenchao; Gao, Wenliang; Wang, Kaixuan; Shen, Shaojie: An efficient

b-spline-based kinodynamic replanning framework for quadrotors, in IEEE Transac-

tions on Robotics, 2019, Vol. 35 (6), S. 1287–1306.

[68] Qin, Kaihuai: General matrix representations for B-splines, in The Visual Compu-

ter, 2000, Vol. 16 (3-4), S. 177–186.

110

LITERATURVERZEICHNIS

[69] Tsai, Ching-Chih; Huang, Hsu-Chih; Chan, Cheng-Kai: Parallel elite genetic al-

gorithm and its application to global path planning for autonomous robot navigation,

in IEEE Transactions on Industrial Electronics, 2011, Vol. 58 (10), S. 4813–4821.

[70] Koyuncu, Emre; Ure, N Kemal; Inalhan, Gokhan: A probabilistic algorithm for

mode based motion planning of agile unmanned air vehicles in complex environ-

ments, in IFAC Proceedings Volumes, 2008, Vol. 41 (2), S. 2661–2668.

[71] Xu, Yang; Lai, Shupeng; Li, Jiaxin; Luo, Delin; You, Yancheng: Concurrent op-

timal trajectory planning for indoor quadrotor formation switching, in Journal of

Intelligent & Robotic Systems, 2019, Vol. 94 (2), S. 503–520.

[72] Holte, Robert C; Grajkowski, Jeffery; Tanner, Brian: Hierarchical heuristic

search revisited, in , 2005, S. 121–133.

[73] Wagner, Glenn; Choset, Howie: M*: A complete multirobot path planning algo-

rithm with performance bounds, in , 2011, S. 3260–3267.

[74] Liu, Sikang; Watterson, Michael; Mohta, Kartik; Sun, Ke; Bhattacharya,

Subhrajit; Taylor, Camillo J; Kumar, Vijay: Planning dynamically feasible tra-

jectories for quadrotors using safe flight corridors in 3-d complex environments, in

IEEE Robotics and Automation Letters, 2017, Vol. 2 (3), S. 1688–1695.

[75] Tang, Sarah; Kumar, Vijay: Safe and complete trajectory generation for robot

teams with higher-order dynamics, in , 2016, S. 1894–1901.

[76] Debord, Mark; Hönig, Wolfgang; Ayanian, Nora: Trajectory planning for hete-

rogeneous robot teams, in , 2018, S. 7924–7931.

[77] Choi, Youngjin; Chung, Wan Kyun: PID trajectory tracking control for mechanical

systems, Springer Science & Business Media, 2004.

[78] Sadeghzadeh, Iman; Mehta, Ankit; Zhang, Youmin; Rabbath, Camille-Alain:

Fault-tolerant trajectory tracking control of a quadrotor helicopter using gain-

scheduled PID and model reference adaptive control, in , 2011, Vol. 2.

[79] Liu, Changlong; Pan, Jian; Chang, Yufang: PID and LQR trajectory tracking con-

trol for an unmanned quadrotor helicopter: Experimental studies, in , 2016, S. 10845–

10850.

[80] Šıér, Zbyněk; Jüttler, Bert: Constructing acceleration continuous tool paths using

Pythagorean hodograph curves, in Mechanism and machine theory, 2005, Vol. 40 (11),

S. 1258–1272.

111

LITERATURVERZEICHNIS

112

	Inhaltsverzeichnis
	Abbildungsverzeichnis
	Abkürzungsverzeichnis
	Einleitung
	Hintergrund
	Problemstellung
	Ziel der Arbeit
	Aufbau und Vorgehensweise

	Literaturübersicht
	zentralisierte Optimierungsmethode
	verteilte Optimierungsmethode

	Softwaregrundlagen
	ROS
	ROS als Softwareframework zur Robotersteuerung
	ROS Master
	ROS Knoten
	ROS Nachrichten
	ROS Themen
	ROS Service
	ROS Server

	MAVLink
	Grundlagen des MAVLinks-Protokolls
	Nachrichtenformat
	Nachrichtenfluss
	MAVROS

	Software in the Loop
	Gazebo
	PX4 Autopilot
	Simulation

	OctoMap
	FCL
	Cplex

	Algorithmen
	Übersicht der Algorithmen von Routen plannung
	Routenplanungsalgorithmen in dieser Arbeit
	RRT, RRT* und informierter RRT*
	A*-Algorithmus
	CBS und ECBS

	Bernsteinpolynome

	Methoden
	Mathematische Modelldefinition
	Darstellung der Trajektorie
	Einschränkungen der Dynamik
	Einschränkungen zur Vermeidung von Hindernissen
	Einschränkungen zur Vermeidung von Interkollisionen

	Statische Methode (ohne Zeitdimension)
	Architektur statischer Methode
	Kartenkonstruktion
	FCL-Kollisionserkennung
	Pfadplanung
	Trajektoriengenerierung

	Dynamische Methode (mit Zeitdimension)
	Architektur der dynamischen Methode
	Initiale Planung
	Der sichere Flugkorridor (SFC)
	Der relativ sichere Flugkorridor(RSFC)
	Dummy-Agenten
	Zeitzuweisung

	Simulation und Evaluation
	Simulation
	Trajektorienfolger
	Simulation der statischen Methode
	Simulation der dynamischen Methode

	Evaluation
	Evaluation der statischen Methode
	Evaluation der dynamischen Methode
	Bewertung der beiden Methoden

	Zusammenfassung und Ausblick
	Fazit
	Ausblick
	Aktuelle Einschränkungen
	Weiterentwicklung der Methoden

	Literaturverzeichnis

