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1 Einleitung

1.1 Hintergrund

Unbemannte Flugroboter (UAV) wurden in der Vergangenheit ausschliellich vom Militar
eingesetzt. Inzwischen wurde der Einsatz von ferngesteuerten Flugzeugsystemen (RPAS)
und kleinen Drohnen ausgeweitet, um zivile Aufgaben wie die Unterstiitzung von Such-
und Rettungsaktionen [14], die Uberwachung von Wetterlagen und Verkehrsstromen und
die Bereitstellung von Giitern zu erledigen [15] und um als Plattform fiir Luftaufnahmen
zu dienen. Drohnen werden eingesetzt, um Verédnderungen in der Umwelt zu bewirken.
Ein gutes Beispiel ist die Landwirtschaft, in der durch den Einsatz von Drohnen zum
Bespriihen von Feldern und zum Verfolgen von Pflanzenwachstumsmustern Effizienzstei-

gerungen erzielt werden kénnen [16].

Einen der vielversprechendsten Einsatzbereiche fiir Drohnen stellen Logistiksysteme dar.
Als Alternative zu starren Logistiksystemen und flurgebundenen Transportsystemen bie-
tet sich daher der Einsatz autonomer Flugroboter zum Warentransport an. Hierdurch wird
die Intralogistik um die dritte Dimension erweitert, zusétzlich kann der bislang ungenutzte
Raumbereich oberhalb der bestehender Produktionssysteme in den Materialfluss einbe-
zogen werden. Das entstehende mehrdimensionale Fordersystem zeichnet sich weiterhin
durch eine hohe Flexibilitdt sowie hohe Geschwindigkeit aus. Der Einsatz von Drohnen
konnte die Arbeitskosten drastisch senken und wird als potenzieller Storfaktor fiir die
konventionelle Paketzustellungsbranche angesehen. Online-Héndler und Lieferfirmen wie
Amazon, DHL, FedEx, JD und Alibaba melden bereits Patente fiir die Entwicklung der
mehrstufigen Erfiillung fiir UAV oder ,,Drohnen-Bienenstocke“ an, die die Bereitstellung
dieser Technologie in einer gebauten Umgebung ermdéglichen wiirden [15][17].Es wurden in
den letzten Jahren umfangreiche Forschungsarbeiten zum moglichen Einsatz von Drohnen
in der Paketzustellung durchgefiihrt, vor allem im Bereich der logistischen Optimierung
[18]. Zudem versprechen sich Logistikunternehmen von der Verwendung von Drohnen die
Losung des Problems der letzten Meile. Bislang stellt der Transportschritt vom letzten
Logistikstiitzpunkt zum Empfinger den aufwendigsten und damit kostenintensivsten Ab-
schnitt der Logistikkette dar[19].
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Abbildung 1.1: Lieferung durch Amazon Prime Air[1]

Abbildung 1.2: DHL Paketkopter|2]

1.2 Problemstellung

Der effiziente und zuverlassige Einsatz autonomer Multikopter in Industrieumgebungen
setzt geeignete Routen voraus. Basierend auf einer vorab generierten dreidimensionalen
Karte der Umgebung sowie wiahrend des Fluges erfasster Sensorinformationen wird eine
kollisionsfreie Flugbahn durch die Fabrikhalle berechnet. Die Berechnung eines solchen
Pfades mit minimalen Kosten von einem bekannten Startzustand zu einem bekannten
Zielzustand fiir einen einzelnen Agenten unter Beriicksichtigung von Hindernissen und
unter Zeitbeschriankung wird als Single-Agent Pfadfindung (SAPF) bezeichnet [20].




1.3 ZIEL DER ARBEIT

Bei der Betrachtung der Zusammenarbeit mehrerer Drohnen miissen nicht nur die stati-
schen Hindernisse aus der Karte beriicksichtigt werden, sondern auch mogliche Kollisio-
nen zwischen den UAV-Gruppen in einem Multi-Agent-System. Jede Drohne in diesem
Multi-Agent-System hat ihren eigenen Ausgangspunkt und ihr eigenes Ziel und muss ihre
Aufgaben unabhingig oder in Zusammenarbeit ausfithren, und zwar ohne Storung an-
derer Drohnen. Die Routenplanung in einer komplexen Umgebung innerhalb kurzer Zeit
und unter Vermeidung von Kollisionen mit Hindernissen oder anderen Agenten wird als
Multi-Agent Pfadfindung (MAPF) bezeichnet [21][22][23].

Unterschieden wird dabei zwischen globaler Planung und lokaler Planung. Wenn die Um-
welt bekannt ist, kann eine globale Pfadplanung offline stattfinden bevor die Roboter sich
in Bewegung setzen. Die lokale Planung wird normalerweise online vollzogen und zielt dar-
auf ab, dass die Roboter in Echtzeit Hindernisse vermeiden. Die Pfadplanung beschrankt
sich auf den Hiillkérper um den Roboter herum mit dem Zweck, die nichste Bewegung
des Roboters zu berechnen und unbekannte oder dynamische Hindernisse in der Nihe
zu vermeiden und dabei die weit entfernten Hindernisse zu ignorieren, um eine schnelle
Planung zu erreichen [24][11]. Diese Arbeit konzentriert sich auf das MAPF-Problem in
bekannter Umgebung und im Offlinebetrieb.

1.3 Ziel der Arbeit

In dieser Arbeit soll ein Framework fiir die dreidimensionale Routenplanung einer Flotte

von Flugrobotern vorgestellt werden. Folgendes sind die Ziele dieser Masterarbeit:

Erarbeitung einer Losung zur dreidimensionalen Routenplanung einer variablen An-
zahl von Flugrobotern.

Vorgegeben seien dabei stets eine Umgebungskarte in Form einer OctoMap, sowie
die Start- und Zielpunkte der einzelnen Roboter.

Ergebnis der Routenplanung sollen roboterspezifische Trajektorien sein, die kollisi-
onsfrei sowie nach Flugstrecke optimiert sind.

Die Kollisionsfreiheit kann dabei durch iiberschneidungsfreie Trajektorien oder zeit-
liche Anpassung erzielt werden.

Bewertung der Robustheit und Leistungsfahigkeit des umgesetzten Routenplaners
mittels Simulation, Ableitung von Anséitzen zur Optimierung der Flugbahnen und

der zur Pfadgenerierung erforderlichen Rechenzeiten.




1 EINLEITUNG

1.4 Aufbau und Vorgehensweise

Kapitel 2 bietet einen Literaturiiberblick, um die aktuell vorherrschenden Ansétze zur
Losung dieses Problems aufzuzeigen. Kapitel 3 und 4 présentieren die Grundlagen fiir
die Entwicklung der angestrebten Systeme. Dazu zéhlen neben Robot Operating System,
OctoMap, Mavros und Gazebo auch bestehende Algorithmen zur Routenplanung. Auch
die relativen Bernsteinpolynome werden dargestellt. Der Hauptteil umfasst die Kapitel 5
und 6, die sich im Aufbau dhneln. In Kapitel 5 werden zwei Methoden beschrieben, um
das MAPF-Problem zu 16sen, ndmlich die statische Methode (3D) ohne Berticksichtigung
der Zeitdimension und die dynamische Methode (4D) mit Zeitdimension. Diese beiden
Methoden werden in Kapitel 6 entwickelt und implementiert. Dem folgt in Kapitel 6
eine Ubersicht der Simulationsarchitektur der beiden Methoden. Das Hauptaugenmerk
bei der Entwicklung gilt der Bewertung der zwei Methoden. Weitere bedeutende Fakto-
ren sind Rechenzeiten, Robustheit, Leistungsfidhigkeit und Pfadkosten sowie Energiever-
brauch. Zusétzlich werden die Vor- und Nachteile sowie Anwendungsfelder der Methoden
vorgestellt. In Kapitel 6 fasst ein Fazit alle Ergebnisse der Evaluation in kurzer Form
zusammen und bewertet anhand dieser das entwickelte Softwaremodul hinsichtlich Lei-
stungsfahigkeit, Zuverlissigkeit und Anwendungsintegration. Kapitel 7 fasst abschlieend
die Anregungen fiir die weitere Forschung zusammen. Den Abschluss bildet ein kurzer

Lebenslauf des Verfassers.




2 Literaturiibersicht

2.1 zentralisierte Optimierungsmethode

Grundsétzlich gibt es zwei akademische Losungsansétze fiir das MAPF-Problem: die zen-
tralisierte Optimierungsmethode und die verteilte Optimierungsmethode [25][26]. In [27]
formulierte D. Mellinger die zentralisierte Optimierungsmethode in ganzzahligen Ein-
schrankungen fiir die quadratische Programmierung mit gemischten Ganzzahlen (MIQP)
um. Aufgrund der rechnerischen Komplexitdt des MIQP sind jedoch mehr als 500 Sekun-
den erforderlich, um die Flugbahn von vier Agenten zu generieren. In [28] wird die sequen-
zielle konvexe Programmierung (SCP) vorgeschlagen, um die nicht konvexen Bedingungen
durch konvexe zu ersetzen. SCP zeigt gute Leistung bei der Planung einer kleinen Anzahl
von Quadrotoren, ist aber ungeeignet fiir ein grofles Team und eine komplexe Umgebung.
Robinson D Reed hat in [29] die nichtlineare Programmierung (NLP) mit sequenzieller
Planung kombiniert, um nichtlineare Einschrénkungen direkt zu behandeln. Diese Ver-
wendung der sequenziellen Planungsmethode ermdoglicht eine hohere Skalierbarkeit. Eine
Einschrinkung ist jedoch, dass fiir eine komplizierte Umgebung, z. B. iiberfiilltes Lager,

keine Losung gefunden werden kann.

2.2 verteilte Optimierungsmethode

Eine verteilte Optimierungsmethode wird ebenfalls in Betracht gezogen, um die Gesamt-
planungszeit durch Verteilung der Rechenlast zu reduzieren. Ansétze basierend auf linear-
quadratic-gaussian (LQG) Hindernis [30][31] und gepuffertem Voronoi-Zellen [32] zeigen,
dass ein kollisionsfreier Pfad in Echtzeit erzeugt werden kann. Solche verteilten Methoden
vermogen jedoch nicht, Vollstandigkeit und Abwesenheit von Deadlocks zu gewéhrleisten.
In [33] schlagen Yu and LaValle eine Methode vor, die sowohl optimale Losungen als
auch eine hohe Effizienz garantiert. Um dieses Ziel zu erreichen, entwerfen sie basierend
auf der integralen linearen Programmierung (ILP) neuartige und vollsténdige Algorith-
men zur Optimierung fiir jedes der vier Ziele. Dann verbessern sie die Rechenleistung
dieser Algorithmen durch die Einfithrung prinzipieller Heuristik. Die Kombination von
ILP-Modell-basierten Algorithmen und Heuristiken erweist sich als duflerst effektiv und

ermoglicht die Berechnung optimaler Losungen fiir Probleme mit hunderten von Robotern
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oft in wenigen Sekunden. Allerdings ist diese Methode auf zweidimensionale Modelle be-
schrankt. Bei drei- oder sogar vierdimensionalen Modellen wird diese Methode aufgrund

der zunehmenden zeitlichen Komplexitét extrem zeitaufwendig [33].

Diese Arbeit hat zum Ziel, eine verteilte Optimierungsmethode mit schnellem erkunden-
den zufilligen Baum (RRT*) in drei Dimensionen und mit konfliktbasiertem Suchen in
vier Dimensionen zu entwickeln [11]. Dieses Modell fiir einen sicheren Flugkorridor (Eng-

lisch: safe flight corridor) wurde eingefithrt, um den Rechenaufwand zu reduzieren [12].




3 Softwaregrundlagen

In diesem Kapitel werden die zur Umsetzung des in dieser Arbeit entwickelten Software-
moduls bendtigten Grundlagen néher betrachtet. Dazu zéahlt das Robot Operating System
(ROS) zur Steuerung des eingesetzten Flugroboters und zur Ausfithrung der entwickel-
ten Programmbausteine. Des Weiteren werden die zur Modellierung und Simulation des
Flugroboters genutzte Open-Source-3D-Robotersimulator sowie die genutzten Software-
bibliotheken OctoMap und Flexible Collision Library (FCL) vorgestellt. Die OctoMap-
Bibliothek implementiert einen 3D-Belegungsgitter-Mapping-Ansatz, der Datenstruktu-
ren und Mapping-Algorithmen in C ++ bereitstellt, die besonders fiir die Robotik geeig-
net sind. FCL wird zur Kollisionserkennung verwendet. Schliellich folgt eine Betrachtung

der eingesetzten mathematische Programmierléser fiir lineare Programmierung.

3.1 ROS

3.1.1 ROS als Softwareframework zur Robotersteuerung

Das als Robot Operating System (ROS) bekannte flexible Software-Framework enthélt
eine Sammlung von Bibliotheken, Konventionen und Tools zum Programmieren einer
Vielzahl von Roboterapplikationen und -anwendungen. Dies vereinfacht die Entwicklung
komplexer und robuster Systeme und Automatisierungslosungen fiir eine Vielzahl von
Entwicklungsteams und Roboterplattformen erheblich. Das Framework entstand aus ei-
ner Kombination von zwei Forschungsprojekten der Stanford University und der Willow
Garage-Softwarearchitektur fiir die Implementierung von Servicerobotern(Personal Ro-
botics Program). Aufgrund der weitgehend freien Zugénglichkeit und Verfiigharkeit einer
groflen Anzahl bereits implementierter Softwarelosungen fiir eine grofle Anzahl von Robo-
tern und integrierbaren Sensoren, einer weltweit wachsenden Community von Entwicklern
und Forschungsteams sowie des Open-Source-Konzepts ist ROS zu einer weitverbreiteten
Plattform fiir eine Vielzahl von Forschungs- und Entwicklungsprojekten der Automatisie-
rungstechnik und Robotik entwickelt geworden [34][35]. Grundsétzlich basiert ROS auf
einem Basissystem, das verschiedene Module bereitstellt, um eine effiziente und erfolg-
reiche Implementierung und Anwendung verschiedener automatisierter Applikationen im

Bereich der Robotik zu erméglichen. Dazu gehoren eine standardisierte Kommunikations-
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infrastruktur, spezifische Bibliotheken fiir Robotik und Sensortechnologie sowie Hilfsmittel
fiir die Visualisierung und Diagnose der entwickelten Softwaremodule. Dieses Kernsystem
kann bei Bedarf auch mit sogenannten Softwarepaketen erweitert werden, die von der Ent-
wicklergemeinschaft frei bereitgestellt oder vom Benutzer implementiert werden. Derzeit

stehen iber 3000 offentlich verfiighare Pakete zur Integration zur Verfiigung [36][35].

3.1.2 ROS Master

Das ROS-Framework besteht aus verschiedenen Teilen, ndmlich Knoten, Nachricht, The-
ma, Dienste, und Server. Zur Verwaltung einzelner ROS-Knoten, Dienste, Klienten,
Aktionenservern und Aktionenklienten dient der sogenannte ROS-Master. Der ROS-
Master stellt den iibrigen Knoten im ROS-System Namens- und Registrierungsdienste
zur Verfiigung. Er verfolgt Verlage und Abonnenten von Themen und Diensten. Die Rol-
le des Masters besteht darin, einzelnen ROS-Knoten zu ermdglichen, sich gegenseitig zu
lokalisieren. Sobald sich diese Knoten gefunden haben, kommunizieren sie miteinander.
Dieses zentrale FElement jeder ROS-Anwendung steuert die Kommunikation mittels der
Knoten, Dienste und Aktionen untereinander. Hierzu miissen sich alle Module vor Pro-
grammausfithrung bei diesem Master registrieren und angeben mit welchen Themen sie
zur Laufzeit interagieren wollen. Die Interaktionen kénnen das Senden und Empfangen
von Nachrichten, Serviceanfragen und -antworten oder Ziel- und Statusveroffentlichungen
enthalten. Auf diese Weise konnen sich einzelne Paketbausteine finden und eine Kommu-
nikation untereinander aufbauen [35]. Abbildung 3.1 stellt schematisch dar, die bei Master

registrierten ROS-Knoten sich erkennen und miteinander kommunizieren.

,,,,,,,,,,,,, Computer1
| |
| ROS |
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Abbildung 3.1: ROS Master
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3.1.3 ROS Knoten

Zum besseren Verstindnis des ROS-Prinzips werden in diesem Abschnitt das Grund-
konzept und die Funktionsweise des bereitgestellten Kommunikationssystems erléautert.
Jede auf dem Roboterbetriebssystem basierende Softwareanwendung besteht normaler-
weise aus einem oder mehreren sogenannten Knoten. Jeder Knoten stellt ein unabhingiges
und ausfithrbares Programm dar, das beispielsweise einen Algorithmus, eine Berechnung
oder andere niitzliche Aufgaben zur Erreichung bestimmter Ziele iibernimmt. Die einzel-
nen Programme kommunizieren iiber standardisierte Nachrichten iiber das Transmission
Control Protocol/Internet Protocol (TCP/IP) und das User Datagram Protocol (UDP)
miteinander. Dies stellt unter anderem sicher, dass einzelne Knoten auch auf verschiede-
nen Computern ausgefithrt werden konnen, die nur in einem Netzwerk verbunden sind. So
ist es beispielsweise moglich, Knoten auf unterschiedlichen Computern mit unterschiedli-
chen Anforderungen an die Leistung der bereitgestellten Hardware auszufithren. Auf diese
Weise kann beispielsweise eine an einem Roboter angebrachte Kamera zur Umgebungser-
kennung auf dem Bordcomputer gestartet werden. Die eigentliche Bildverarbeitung und
Weiterverarbeitung der Sensordaten erfolgt jedoch durch einen leistungsstarken Compu-
ter, wie Abbildung 3.2. AuBerdem koénnen die beim Master registrierten Knoten die ver-
schiedene Themen abonnieren und veroffentlichen, damit die Nachrichten zwischen den

Knoten in den zugeordneten Themen gesendet und empfangen werden.
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Abbildung 3.2: ROS Knoten

3.1.4 ROS Nachrichten

Nachrichten, die von einem Knoten empfangen oder gesendet werden konnen, werden in

der Regel bestimmten Themenbereichen zugeordnet. Grundsétzlich konnen die Namen frei
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gewahlt werden, sollten jedoch durch einen eindeutigen Begriff wie Motor- oder Raddreh-
zahl beschrieben werden, der die in der Nachricht enthaltenen Daten eindeutig beschreibt.
Fiir Nachrichten, die in der Robotik und Automatisierungstechnik héufig verwendet wer-
den, wie z. B. Position und Positionsinformationen, existieren bereits vordefinierte Daten-
strukturen. Weitere Knoten kénnen die genannten Themen abonnieren und haben somit
Zugriff auf alle Nachrichten, die dem jeweiligen Thema zugeordnet und veroffentlicht sind.
Dariiber hinaus konnen mehrere Themen innerhalb eines Knotens abonniert oder Nach-
richten an eine beliebige Anzahl von Themen gesendet werden. Besteht ein Softwaremodul
aus mehreren Knoten, ist es moglich, mehrere Nachrichten von verschiedenen Knoten zu
einem Thema zu senden und ein Thema mit mehreren Knoten gleichzeitig zu abonnieren.
Dieses Knoten- und Themenkonzept ermoglicht eine effiziente und einfache Verkniipfung,
und zwar auch fiir Anwendungen, die in verschiedenen Programmiersprachen entwickelt
wurden. Durch die Kapselung der einzelnen Operationen in verschiedenen Knoten wird
die Komplexitit des zugrunde liegenden Quellcodes im Vergleich zu einem einzelnen Pro-
gramm erheblich reduziert. Dadurch ist genau bekannt, welche Softwarekomponente von
welchem Knoten ausgefithrt wird. Die Fehlertoleranz wird auch durch den modularen
Aufbau der Software reduziert. Der Absturz eines isolierten Knotens fithrt normalerweise

nicht zu einem vollstédndigen Systemausfall [35].

3.1.5 ROS Themen

ROS Themen sind Busse, iiber die Knoten Nachrichten austauschen koénnen. Themen
haben eine anonyme abonnieren- und verdffentlichen-Semantik, die die Produktion von
Informationen von ihrem Verbrauch entkoppelt. Im Allgemeinen wissen die Knoten nicht,
mit wem sie kommunizieren. Stattdessen abonnieren Knoten, die an Daten interessiert
sind, das relevante Thema. Knoten, die Daten generieren, veroffentlichen das relevante
Thema. Es kann mehrere Herausgeber und Abonnenten eines Themas geben. Das be-
deutet, dass die Themen fiir unidirektionale Streaming-Kommunikation vorgesehen sind.
Jedes Thema ist stark vom ROS-Nachrichtentyp abhéngig, der zum Verdffentlichen ver-
wendet wird, und Knoten kénnen nur Nachrichten mit einem passenden Typ empfan-
gen. Der Master erzwingt keine Typkonsistenz zwischen den Herausgebern, aber Abon-
nenten stellen nur dann einen Nachrichtentransport her, es sei denn, wenn die Typen
iibereinstimmen. Dariiber hinaus priifen alle ROS-Clients, ob eine aus den Nachrichten-
dateien berechnete kryptografische Hashfunktion vom Typ Message-Digest Algorithm 5
(MD5) iibereinstimmt. Diese Uberpriifung stellt sicher, dass die ROS-Knoten aus konsi-
stenten Codebasen kompiliert wurden. Abbildung 3.3 zeigt, wie der Kameraknoten eine

Nachricht unter dem ROS-Thema image-data verdffentlicht, damit diese von den dieses

10



3.1 ROS

Thema abonnierenden Knoten Image-Processing und Image-Display empfangen werden

kann.
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Abbildung 3.3: ROS Themen

3.1.6 ROS Service

Der ROS-Service stellt eine weitere Kommunikationsstruktur zur Verfiigung, die vor allem
fiir verteilte Systeme genutzt wird. Dabei wird ein Service von einem Knoten veroffentlicht.
Dieser wird mit den bereits erlauterten Themen ebenfalls mit einem eindeutigen Namen
versehen. Im weiteren Verlauf der Datenaustausches durch ein eindeutig definiertes Paar
an Nachrichten. Hier konnen Nachrichten in Anfragen und Antworten gesendet werden.
So initialisiert ein Knoten einen Service unter den Namen und ein Klient Knoten abon-
niert diesen Dienst durch das Senden einer Anfragenachricht. AnschlieSend wartet dieser
auf eine eingehende Antwort. Der Service ist dabei nur solange aktiv, bis er die vom
Klienten erhaltene Nachricht und das Endergebnis vercffentlicht hat. Bis zu einer erneu-
ten Anfrage verdffentlicht er keine neuen Nachrichten mehr. Als typisches Beispiel fiir
eine solche Servicebeziehung kann ein Bildverarbeitungsalgorithmus wie in Abbildung 3.4
angefithrt werden. Dort fordert der Image-Processing Knoten zuerst image_data an, der

Kameraknoten sammelt Daten von der Kamera und sendet dann die Antwort.

3.1.7 ROS Server

Ein weiterfithrendes komplexeres Kommunikationskonzept im Sinne des Service-Klient-

Prinzips ist die Struktur Status-Action-Server/-Klient-Struktur. Die Funktionsweise ist
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Abbildung 3.4: ROS Service

dabei der vorangehend erldauterten Service-/Klient-Kommunikation sehr &hnlich. Hier-
bei besteht der Basisaufbau aus einem Server- und einem Klient-Knoten. Der grofle Un-
terschied zur Service-Klient-Kommunikation besteht unter anderem darin, dass die vom
Action-Server wahrnehmbare Aktion im Verlauf abgebrochen werden kann. Dieses Kon-
zept ist vor allem fiir Aktionen geeignet, deren Ausfithrung iiber einen gewissen Zeitraum
hinweg stattfindet. Dies ermoglicht es dem Benutzer, gestartete Aktionen durch direkten
Eingriff wieder abzubrechen. Auch wird eine Feedback-Moglichkeit zur Kontrolle bereit-
gestellt. Die Kommunikation zwischen Action-Server und -Klient erfolgt dabei iiber das
sogenannte ,ROS Action Protocol“, welches hierarchisch iiber den ROS Nachrichten zur
Kommunikation zwischen einfachen Knoten angesiedelt ist. Dazu miissen in einem an-
deren Dokument das zu einer Aktion gehorende Ziel, das Feedback und das Ergebnis
festgehalten werden. Diese essenziellen Bausteine werden durch ROS Nachrichtentypen
miteinander verkniipft. Nach dem Start des Action-Servers wird dieser aktiv und fiir den
dazugehorigen Action-Klienten sichtbar. Erhélt Letzterer eine positive Riickmeldung des
Servers, wird ein neues Ziel bestimmt. Dies wird die Funktion des Action-Servers abon-
niert und damit die Programmausfithrung durch diese Aufgaben. Dies ist der Fall, der
dem Server gehort. Zusatzlich wird fiir jedes Ziel eine sogenannte Status Maschine ange-
legt, die Informationen iiber den Status des zugeordneten Ziels gibt. Je nach gewiinschter
Komplexitdt sind hier unterschiedliche Ausgaben moglich. Meist wird allein zwischen den
Statuswerten ,, Aktiv“, , Andauernd“ und , Fertig® unterschieden. Auch das Senden eines
neuen Ziels erfordert einen neuen Programmdurchlauf, da es grundsétzlich nicht méglich
ist, dass mehrere Ziele fiir den gleichen Server aktiv sind. Ist der Programmablauf er-
folgreich und somit das eingegebene Ziel erreicht, hat der Action-Server eine bestimmte

definierte Ergebnisnachricht. Der Server erlaubt keinen Zugriff durch neue Nachrichten
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solange kein neues Ziel zugesendet wird. Ein mdéglicher Anwendungsfall fiir die Kommu-
nikation zwischen Action-Server und -Klient stellt das Ansteuern einer Position im Raum
durch ein autonomes Fahrzeug dar. Dabei werden als Ziel die Koordinaten der Endposi-
tion bestimmt. Wahrend der Fahrt kann das Fahrzeug Feedback beispielsweise in Form
der aktuellen Position, Geschwindigkeit und Fahrzeit geben. Ist die Zielposition erreicht,
kann diese als Ergebnis veroffentlicht werden, um das Fahrzeug anzuhalten oder ein neues
Ziel zu iibermitteln [35]. Abbildung 3.5 zeigt ein Beispiel fiir eine Klientenbeziehung in
der Bildverarbeitung, die ausschliefllich aktiv wird, sobald die Kamera eine neue Bildda-
tei iibermittelt. Anschlieend wird das bearbeitete Bild aus dem Kameraknoten einmalig
vertffentlicht. Dann empfangt der Image-Processing-Knoten das bearbeitete Bild unter

dem Thema Image_Data.

ROS
Master

l Registration Registration l

Camera Publish /image_data Subscribe Image Processing
Node Message Node

T

Abbildung 3.5: ROS Server

Die Verkniipfung von Knoten untereinander ist in Abbildung 3.6 illustriert. ROS-
Metapakete beinhalten mehrere, thematisch oder funktionell zusammengehorige ROS-
Pakete und werden zur Organisation von ROS-Paketen verwendet. ROS-Pakete stellen
einen oder mehrere Knoten (Nodes) zur Verfiigung, die Datenstrome via multicast zu be-
stimmten Themengebieten (Topics) bereitstellen und auf Datenstrome von anderen Kno-
ten zugreifen (publish, subscribe). Knoten kénnen zudem Dienste (Services) anbieten. Ein
Dienst realisiert eine Ende-zu-Ende-Kommunikation nach dem Prinzip Anfrage/Antwort.
Ein zentraler Master-Knoten registriert und verwaltet alle Knoten sowie deren Themen-

gebiete und Dienste.
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Abbildung 3.6: Schematischer Grundaufbau von ROS

3.2 MAVLink

Um eine Datenkommunikation zwischen dem ROS-Framework und der Drohne herzustel-
len, mittels der Befehle zur Drohne gesendet und Daten von der Drohne empfangen werden
kénnen, wird ein Kommunikationsprotokoll namens Micro Air Vehicle Link (MAVLink)

eingefiihrt.

3.2.1 Grundlagen des M AV Links-Protokolls

MAVLink ist ein Protokoll hauptséchlich fiir die Kommunikation mit kleinen unbemann-
ten Fahrzeugen, die als Header-Nachrichten-Marshalling-Bibliothek konzipiert ist. Das
MAVlink-Protokoll wurde 2009 von Lorenz Meier von der Computer Vision and Geometry
Group der Eidgenossischen Technischen Hochschule Ziirich unter der Open-Source-Lizenz
LGPL veroffentlicht. Als Open-Source-Kommunikationsprotokoll auf hoherer Ebene ba-
siert Mavlink-Protokoll auf serieller Kommunikation, den Standards CAN-Bus und SAE
AS-4 und soll eine Sende- und Empfangsregel formulieren und eine Priifsummenfunktion
fiir die Daten hinzufiigen, die haufig verwendet werden, wenn kleine Flugzeuge mit Bo-
denstationen (oder anderen Flugzeugen) kommunizieren. Das Protokoll definiert die Re-
geln fiir die Parameteriibertragung in Form einer Nachrichtenbibliothek, die verschie-
dene Arten unbemannter Luftfahrzeuge, z. B. Startfliigelflugzeuge, unbemannte Dreh-
fliigler und unbemannte Fahrzeuge unterstiitzt. Wie das ROS-Framework folgt auch das
MAVLink-Protokoll einem modernen hybriden Publish-Subscribe- und Punkt-zu-Punkt-
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Entwurfsmuster: Datenstrome werden als Themen gesendet/ verdffentlicht, wahrend
Unterprotokolle wie das Missionsprotokoll oder das Parameterprotokoll bei erneuter

Ubertragung Punkt-zu-Punkt sind.
Nachrichten werden als XML-Dateien formatiert. Jede XML-Datei definiert den Nach-

richtensatz, der von einem bestimmten MAVLink-System unterstiitzt wird, das auch als
"Dialekt” bezeichnet wird. Der Referenznachrichtensatz, der von den meisten Bodenkon-
trollstationen und Autopiloten genutzt wird, ist im common.xml-Format definiert (die

meisten Dialekte bauen auf dieser Definition auf).

Die MAVLink-Toolchain generiert anhand der XML-Nachrichtendefinitionen MAVLink-
Bibliotheken fiir jede der unterstiitzten Programmiersprachen. Drohnen, Bodenkontroll-
stationen und andere MAVLink-Systeme verwenden die generierten Bibliotheken zur
Kommunikation. Diese sind in der Regel MIT-lizenziert und konnen daher in jeder Closed-
Source-Anwendung ohne Einschrénkungen verwendet werden, ohne den Quellcode der

Closed-Source-Anwendung zu verdffentlichen.

3.2.2 Nachrichtenformat

Wie in Abbildung 3.7 gezeigt, hat jeder Nachrichtenrahmen die gleiche Struktur. Das rote
und die griinen Felder in der Grafik représentieren jeweils ein Datenbyte. Die Lange der

Daten im grauen Feld ist nicht festgelegt.
In Version 1.0 wird FE als Startflag(stx) verwendet(rot markiert). Diese Flag ist niitzlich,

wenn der Empfanger des MAVLink-Nachrichtenrahmens eine Nachrichtendecodierung
durchfiihrt. Das zweite Feld représentiert die Byteldinge (len) der Playload (Nutzlast,
grau markiert), die in der Nutzlast zu verwendenden Daten im Bereich von 0 bis 255.
Das empfangende Ende des MAVlink-Nachrichtenrahmens kann diese Information mit
der tatsédchlich empfangenen Nutzdaten vergleichen, um deren Integritdat zu verifizieren.
Das dritte Feld stellt die Sequenznummer (seq) des aktuellen Nachrichtenrahmens dar.
Jedes Mal, wenn eine Nachricht gesendet wird, wird der Wert dieses Bytes um 1 erhoht,
bis die Zéahlung nach dem Maximalwert von 255 wieder bei 0 beginnt. Diese Sequenznum-
mer wird vom Empfianger des MAVLink-Nachrichtenrahmens verwendet, um das Nach-
richtenverlustverhéltnis zu berechnen, das der Signalstdrke entspricht. Das vierte Feld
stellt die Systemnummer (sys) des Geréts dar, das diesen Nachrichtenrahmen gesendet
hat. Die Standardsystemnummer ist 1, wenn PIXHAWK zum Flashen der PX4-Firmware
verwendet wird. Die Systemnummer wird verwendet, um zu identifizieren, auf welchem
Gerat die Nachricht vom Empfinger des MAVLink-Nachrichtenrahmens gesendet wird.
Das fiinfte Feld stellt die Einheitennummer (comp) des Geréts dar, das diesen Nach-
richtenrahmen gesendet hat. Der Standardwert ist 50, wenn PIXHAWK zum Flashen
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MAVLink Frame — 8-263 bytes

STX LEN SEQ SYS COMP MSG PAYLOAD CKA CKB
Byte | Content Value Explanation
Index
0 | Packet start v1.0: OxFE Indicates the start of a new packet.
sign (v0.9: 0x55)
1 | Payload length | 0 - 255 Indicates length of the following payload.
2 | Packet 0-255 Each component counts up his send sequence. Allows to detect
sequence packet loss
3 | System ID 1-255 ID of the SENDING system. Allows to differentiate different MAVs
on the same network
4 | Component|D | 0-255 ID of the SENDING component. Allows to differentiate different
components of the same system, e.g. the IMU and the autopilot
5 | Message ID 0-255 ID of the message - the id defines what the payload "means” and
how it should be correctly decoded.
61to | Data (0 - 255) bytes | Data of the message, depends on the message id.
(n+6}
(n+7) to | Checksum (low | ITU X.25/SAE AS-4 hash, excluding packet start sign, so bytes 1..(n+8) Note:
(n+8) | byte, high byte) | The checksum also includes MAVLINK_CRC_EXTRA (Number computed from
message fields. Protects the packet from decoding a different version of the same
packet but with different variables).

Abbildung 3.7: MAVLink Nachrichtenformat [3]

der PX4-Firmware verwendet wird. Die Einheitennummer, um die Einheit des Geriits
zu identifizieren, das die Nachricht vom Empfinger des MAVLink-Nachrichtenrahmens
empfangen hat. Es ist vorerst nutzlos. Das sechste Feld stellt die Nummer (msg) des
Nachrichtenpakets in der Nutzlast dar. Diese unterscheidet sich von der Sequenznum-
mer. Der Empfinger des MAVLink-Nachrichtenrahmens muss anhand dieser Nummer
bestimmen, welche Nachricht in der Nutzlast platziert wird. Die letzten zwei Bytes sind
16-Bit-Priifbits, CKB sind die oberen acht Bits und CKA sind die unteren acht Bits. Der
Priifcode wird vom CRC-16-Algorithmus(zyklische Redundanzpriifung) erhalten. Der Al-
gorithmus fithrt die CRC-16-Berechnungfiir die gesamte Nachricht durch (vom Startbit
bis zum Ende der Nutzlast plus einem zuséitzlichen MAVLINK_CRC_EXTRA-Byte), um
einen 16-Bit-Priifcode zu erhalten. Jede der zuvor erwidhnten Nutzdaten in der Nutzlast
(angezeigt durch die Nachrichtenpaketnummer) gibt einen MAVLINK_CRC_EXTRA an.
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Dieser MAVLINK_CRC_EXTRA wird von der XML-Datei generiert, die den MAVLink-
Code generiert. Wenn das Flugzeug und die Bodenkontrollstation unterschiedliche Ver-
sionen des MAVLink-Protokolls verwenden, sind die von den beiden Parteien berechneten
Priifcodes unterschiedlich, sodass die MAVLink-Protokolle zwischen verschiedenen Versio-
nen nicht ordnungsgeméafl zusammenarbeiten. Durch diese Methode wird das erhebliche

Fehlerrisiko einer Kommunikation zwischen verschiedenen Versionen vermieden.

Geméifl dem Format dieser Nachrichten muss der Absender immer die Felder System-1D
und Komponenten-ID ausfiillen, damit der Empfanger weif3, woher das Paket stammt. Die
System-ID ist eine eindeutige ID fiir jedes Fahrzeug oder jede Bodenkontrollstation. Bo-
denkontrollstationen verwenden normalerweise eine hohe System-ID wie 255 und Fahrzeu-
ge verwenden standardméfig 1 (dies kann durch Setzen des Parameters SYSID_THISMAV
gedndert werden). Die Komponenten-ID fiir die Bodenkontrollstation oder den Flugregler
lautet normalerweise 1. Andere MAVLink-fahige Gerédte im Fahrzeug (etwa Begleitcom-
puter, Gimbal) sollten dieselbe System-ID wie der Flugcontroller verwenden, jedoch eine

andere Komponenten-1D.

3.2.3 Nachrichtenfluss

In diesem Format verpackt wird die Nachricht zum Fahrzeug oder zur Bodenkontrollsta-
tion gesendet. Abbildung 3.8 zeigt ein Beispiel fiir den Nachrichtenfluss zwischen Boden-
kontrollstation und Drohne. Sobald eine Verbindung zwischen den beiden hergestellt ist,
sendet jedes Geriit (auch bekannt als System) die Heartbeat-Nachricht (orange Pfeile in
der Abbildung). Diese wird im Allgemeinen verwendet, um anzuzeigen, dass das Gerit,
das die Nachricht sendet, aktiv ist.

Sowohl das Flugzeug als auch die Bodenkontrollstation senden dieses Signal (normalerwei-
se in der 1-Hertz-Frequenz), die Bodenkontrollstation und das Flugzeug bestimmen, ob sie
das Flugzeug oder die Bodenkontrollstation verloren haben, je nachdem, ob das Heartbeat-
Paket rechtzeitig empfangen wird. Wenn beide Gerédte das Heartbeat-Paket des anderen
empfangen haben, fordert die Bodenkontrollstation die gewiinschten Daten (und die Rate)
an, indem sie Nachrichten der folgenden Typen REQUEST _DATA _STREAM und COM-
MAND _LONG sendet. REQUEST _DATA _STREAM unterstiitzt das Festlegen der Rate
von Nachrichten. COMMAND_LONG mit einem Befehl SET_MESSAGE_INTERVAL bie-
tet eine genaue Kontrolle dariiber, welche Nachrichten gesendet werden (und deren Rate),
wird jedoch nur von ArduPilot 4.0 und hoher unterstiitzt. Dann bekommt die Drohne die
Anfordern-Nachricht und sendet die angeforderte Daten per MAVLink-Nachricht. Falls die
Bodenkontrollstation die Nachricht mit Daten empféngt, ist dieser Kommunikationspro-

zess beendet. Falls nicht, wird die Anfordern-Nachricht erneut gesendet, bis diese Daten
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Abbildung 3.8: MAVLink Nachrichtenfluss [3]

empfangen werden. Wenn eine Bodenkontrollstation einen Befehl an das Flugzeug sen-
det (weinrote Pfeilspitze in der Abbildung) und dieser Befehl empfangen wird, sendet die
Drohne eine ACK-Nachricht als Bestétigung zuriick an die Bodenkontrollstation. Erhélt
die Kontrollstation keine ACK-Nachricht von der Drohne, ist das ein Hinweis dafiir, dass

die Drohne den Befehl moglicherweise nicht bekommen hat.

3.2.4 MAVROS

MAVROS ist ein ROS-Paket, das die erweiterbare MAVLink-Kommunikation zwi-
schen ROS-Framework, MAVLink-fahigen Autopiloten und MAVLink-fahigen Boden-
kontrollstationen ermoglicht. Der Hauptkommunikationsknoten des Pakets ist der
MAVROS-Knoten, der das Thema mavros_msgs/Mavlink abonniert und das Thema ma-
vros_msgs/Mavlink und diagnostic_msgs/DiagnosticStatus verdffentlicht, um die Daten
und Befehle zwischen Drohnen oder Simulator und ROS zu iibertragen. Neben den Haupt-
themen gibt es viele Unterthemen, um die verschiedenen Kommunikationsfunktionen zu
implementieren. So kann zum Beispiel das Thema geometry_msgs/PoseStamped die ak-
tuelle Positionen der Drohne veroffentlichen und die Sollwertpositionen vom ROS an die
Drohne weitergeben. Ein weiterer Knoten mavros_extras, erméglicht die Ergénzung von
ROS-Paketen durch zusétzliche Kommunikations-Plugins etwa fiir Schwingungen und Ka-

meradaten, die in mavros_node nicht enthalten sind.
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3.3 Software in the Loop

Um die Implementierung des Algorithmus zu simulieren und die Software zu testen,
wird die Methode Software-in-the-Loop (SIL) vorgestellt. SIL bezeichnet das Testen von
ausfithrbarem Code wie Algorithmen (oder sogar eine gesamte Controller-Strategie), der
gewohnlich fiir ein bestimmtes mechatronisches System geschrieben wurde, in einer Mo-
dellierungsumgebung, um die Kosten zu verringern und dem Test zu vereinfachen. Fiir
diese Arbeit werden die Umwelt und die Drohnen in Gazebo modelliert und die Verbin-
dung zwischen dem Gazebo Simulator und ROS-Framework durch PX4 realisiert. Durch

diese Vorgehensweise werden Kollisionsrisiken vermieden.

3.3.1 Gazebo

Gazebo Simulator ist ein Open-Source-3D-Robotersimulator, der von 2004 bis 2011 Be-
standteil des Player Project war [37]. Im Jahr 2011 wurde Gazebo ein unabhingiges
Projekt, das von Willow Garage unterstiitzt wurde. Im Jahr 2012 wurde die Open Source
Robotics Foundation (OSRF) zum Verwalter des Gazebo-Projekts und dnderte dessen
Namen 2018 zu Open Robotics [38].

Gazebo integrierte die Physik-Engine Open Dynamics Engine (ODE), OpenGL-Rendering

und Support-Code fiir die Sensorsimulation und die Akteursteuerung. Gazebo kann
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mehrere Hochleistungs-Physik-Engines wie ODE oder Bullet verwenden (die Standar-
deinstellung ist ODE) und bietet eine realistische Prisentation von Umgebungen, ein-
schlieflich hochwertiger Darstellung von Licht, Schatten und Texturen. Der Simulator
kann Sensoren modellieren, die die simulierte Umgebung erfassen, beispielsweise Laser-

Entfernungsmesser, Kameras (einschliellich Weitwinkel) und Sensoren im Kinect-Stil.

3.3.2 PX4 Autopilot

Der im Rahmen dieser Arbeit verwendete Autopilot PX4 stellt eine breit einsetzbare Kon-
trollmoglichkeit fiir Flugroboter dar und ist mit weiteren Plattformen, wie ROS und den
von ROS unterstiitzten Visualisierungswerkzeugen Gazebo und RViz kompatibel. Der PX4
Autopilot ist Teil eines Open-Source Projektes namens Dronecode Project, das auf ko-
stengiinstige autonome Flugzeuge ausgerichtet ist. Das Projekt startete 2009 und wird am
Computer Vision and Geometry Lab der ETH Ziirich weiterentwickelt und eingesetzt und
vom Autonomous Systems Lab und dem Automatic Control Laboratory unterstiitzt. Es
stellt eine umfangreiche Plattform fiir unbemannte Flugroboter zur Verfiigung. Zusétzlich
zum genannten Autopiloten und der Bodenkontrollstation bietet das Projekt das bereits
eingefithrte Kommunikationsprotokoll namens MAVLink fiir Flugroboter aller Art an.
Derzeit wird das Dronecode Project weltweit von namhaften Entwicklungs-, Forschungs-

und Industriepartnern unterstiitzt und getragen.

PX4 unterstiitzt sowohl die SITL-Simulation, bei der der Flightstack auf einem Computer
(entweder auf demselben Computer oder einem anderen Computer im selben Netzwerk)
ausgefithrt wird, als auch die Hardware in the Loop (HIL) Simulation unter Verwendung
einer Simulationsfirmware auf einer realen Flugcontroller-Tafel. In dieser Arbeit wird die
SIL-Simulation beschrieben. Die Simulatoren wie Gazebo, JMAVSim und AirSim sind mit
PX4 fiir die SIL-Simulation kompatibel. Von diesen unterstiitzen Gazebo und jMAVSim
die Multifahrzeugsimulation. Wie oben beschrieben, dient fiir diese Arbeit Gazebo als

Simulator.

Der Autopilot PX4 besteht aus zwei Hauptschichten: Der Flightstack ist ein Estimation-
und Flight-Control-System, und die Middleware ist eine allgemeine Robotikschicht, die
autonome Roboter jede Art unterstiitzen kann und interne/externe Kommunikation sowie
Hardware-Integration bietet. Das Diagramm in Abbildung 3.11 bietet einen detaillierten
Uberblick iiber die Bausteine von PX4. Der obere Teil des Diagramms stellt Middleware-
Blocke dar, wahrend der untere Teil die Komponenten des Flightstacks zeigt. Die Pfeile
reprasentieren den Informationsfluss zwischen den Modulen. In der Realitét gibt es viel
mehr Verbindungen als gezeigt, und auf einige Daten (z. B. fiir Parameter) greifen die

meisten Module zu. Module kommunizieren miteinander iiber einen Publish-Subscribe-
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Nachrichtenbus mit dem Namen uORB. Die Verwendung des Publish-Subscribe-Schemas
bedeutet erstens, dass das System reaktiv ist (also aktualisiert wird, wenn neue Daten
verfiigbar sind), zweitens, dass alle Operationen und die Kommunikation vollsténdig par-
allel ablaufen, und drittens, dass eine Systemkomponente Daten von iiberall auf thread-

sichere Weise verarbeiten kann.

Die Middleware besteht im Wesentlichen aus Geritetreibern fiir eingebettete Sensoren,
der Kommunikation mit der Auflenwelt (Begleitcomputer, GCS usw.) und dem UORB-
Publish-Subscribe-Nachrichtenbus. Dariiber hinaus enthélt die Middleware eine Simulati-
onsschicht, mit der der PX4-Flugcode auf einem Desktop-Betriebssystem ausgefiihrt und
eine computermodellierte Drohne in einer simulierten Umgebung gesteuert werden kann.
Da die Module auf Nachrichtenaktualisierungen warten, definieren die Treiber normaler-
weise, wie schnell ein Modul aktualisiert wird. Die meisten IMU-Treiber testen die Daten
mit einer Frequenz von 1 kHz, integrieren sie und veroffentlichen sie mit 250 Hz. Andere
Teile des Systems, wie der Navigator, benotigen keine so hohe Aktualisierungsrate und

laufen daher erheblich langsamer.

Der Flightstack ist eine Sammlung von Leit-, Navigations- und Steuerungsalgorithmen
fiir autonome Drohnen. Er enthélt Steuerungen fiir Starrfliigel-, Multirotor- und VTOL-
Flugzeugzellen sowie Schéatzer fiir Fluglage und Position. Abbildung 3.10 zeigt eine
Ubersicht iiber die Bausteine des Flightstacks. Das Diagramm zeigt die gesamte Pipe-
line von Sensoren, RC-Eingang und autonomer Flugsteuerung (Navigator) bis hin zur

Motor- oder Servosteuerung (Aktuatoren).

Position & Attitude
Se"
- . Attitude & Rate -
Position Controller c oller Mixer Actuator

Abbildung 3.10: Flightstack

Ein Estimator nimmt eine oder mehrere Sensoreingaben und berechnet daraus einen Fahr-
zeugzustand (zum Beispiel anhand der IMU-Sensordaten). Eine Steuerung (Position Con-
troller) ist eine Komponente, die einen Sollwert und eine Messung oder einen geschétzten
Zustand (Prozessvariable) als Eingabe verwendet. Ziel ist es, den Wert der Prozessvaria-
blen so anzupassen, dass er dem Sollwert entspricht. Der Output ist eine Korrektur, um

diesen Sollwert schliellich zu erreichen. Beispielsweise nimmt der Positionsregler Positions-

21



3 SOFTWAREGRUNDLAGEN

sollwerte als Eingaben an, die Prozessvariable ist die geschéitzte aktuelle Position, und die
Ausgabe ist ein Lager- und Schubsollwert, der das Fahrzeug in Richtung der gewiinschten
Position bewegt. Ein Mixer nimmt Kraftbefehle entgegen (z. B. rechts abbiegen) und
iibersetzt sie in einzelne Motorbefehle, wobei sichergestellt wird, dass bestimmte Grenz-
werte nicht {iberschritten werden. Diese Ubersetzung ist spezifisch fiir jeden Fahrzeugtyp
und héngt von verschiedenen Faktoren ab, wie z. B. den Motoranordnungen in Bezug auf

den Schwerpunkt oder der Rotationstréigheit der Drohne.

3.3.3 Simulation

Alle Simulatoren kommunizieren mit PX4 iiber die Simulator-MAVLink-API. Diese API
definiert eine Reihe von MAVLink-Nachrichten, die Sensordaten aus der simulierten Welt
an PX4 liefern und Motor- und Aktorwerte aus dem Flugcode zuriickgeben, der auf das
simulierte Flugzeug angewendet wird. Abbildung 3.12 zeigt den Nachrichtenfluss in einer

typischen SIL-Simulationsumgebung fiir einen der unterstiitzten Simulatoren.

Die verschiedenen Teile des Systems stellen UDP-Verbindungen her und kdénnen ent-
weder auf demselben Computer oder auf einem anderen Computer im selben Netz-
werk ausgefithrt werden. Standardméflig verwendet PX4 UDP-Ports fiir die MAVLink-
Kommunikation mit Bodenkontrollstationen (z. B. QGroundControl), Offboard-APIs (z.
B. MAVSDK, MAVROS) und Simulator-APIs (z. B. Gazebo). PX4 verwendet das norma-
le MAVLink-Modul, um eine Verbindung zu Bodenstationen (die Port 14550 iiberwachen)
und externen Entwickler-APIs wie MAVSDK oder ROS (die Port 14540 {iberwachen) her-
zustellen. Der lokale TCP-Port 4560 des Simulators wird fiir die Kommunikation mit PX4
verwendet. Die Simulatoren tauschen dann mithilfe der oben beschriebenen Simulator-
MAVLink-API Informationen mit PX4 aus.

3.4 OctoMap

Die im Rahmen dieser Arbeit verwendete OctoMap-Bibliothek wurde von Kai M.
Wurm und Armin Hornung an der Universitdt Freiburg im Jahr 2013 entwickelt und
wird derzeit von Armin Hornung gepflegt. Die OctoMap-Bibliothek implementiert einen
3D-Belegungsgitter-Mapping-Ansatz, der Datenstrukturen und Mapping-Algorithmen in
C++ bereitstellt, die besonders fiir die Robotik geeignet sind. Die Kartenimplementierung
basiert auf einem Octree. Ein Octree ist eine hierarchische Datenstruktur fiir dreidimensio-
nale rdumliche Unterteilung. Jeder Knoten in einem Octree reprisentiert den enthaltenen

Raum in einem kubischen Volumen, normalerweise als Voxel bezeichnet. Dieser Band wird
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Control signals / Telemetry

PX4 inputs from simulator PX4 motor/actuator outputs

Sensor and other message Flight stack Motor and actuator value messages
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Abbildung 3.12: Simulator Nachrichtenfluss [39]
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Abbildung 3.13: Software in the Loop Architektur [40]

rekursiv in acht Teilbédnde unterteilt, bis eine gegebene minimale Voxelgrofie erreicht wird.
Abbildung 3.14 stellt das Volumenmodell links und den entsprechenden Baum rechts dar-
gestellt. Die minimale Voxelgrofle bestimmt die Auflosung des Octree. Da ein Octree eine
hierarchische Datenstruktur ist, kann der Baum auf jeder Ebene beschnitten werden, um
eine grobere Unterteilung zu erhalten, wenn die inneren Knoten entsprechend gepflegt
werden. In Abbildung 3.15 werden besetzte Voxel in Auflosungen von 0,08 Metern, 0,64
Metern und 1,28 Metern angezeigt [5].

In ihrer einfachsten Form kénnen Octrees die boolesche Eigenschaft modellieren, um die

Belegung eines Volumens zu kartieren. Wenn ein bestimmtes Volumen als besetzt gemes-
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Abbildung 3.14: Octree

Abbildung 3.15: Octree-Auflésung [5]

sen wird, wird der entsprechende Knoten im Octree initialisiert. In der OctoMap werden
Sensorablesungen mithilfe der von Moravec und Elfes eingefiithrten Belegungsgitterkar-
tierung integriert [41]. Die Wahrscheinlichkeit P(n | z;,;) eines Knotens n, der bei den

Sensormessungen z;.; besetzt werden soll, ist wie folgt definiert:

1-P(n|z)1=P(n|z,.) Pn) r

P(n | Zl:t) = [1 + P(n | Zt) P(n | Zl:t—l) 1- P(n)

(3.1)

Diese Aktualisierungsformel hiangt von der aktuellen Messung z;, einer vorherigen Wahr-
scheinlichkeit P(n) und der vorherigen Schitzung P(n | zi4-1) ab. Der Term P(n | z,)
bezeichnet die Wahrscheinlichkeit, dass Voxel n bei der Messung z; besetzt wird. Dieser
Wert ist spezifisch fiir den Sensor, der z; erzeugt hat. Die iibliche Annahme einer ein-
heitlichen vorherigen Wahrscheinlichkeit fiihrt zu P(n) = 0,5 und unter Verwendung der
Log-Odds-Notation kann die Gleichung 6.1 umgeschrieben werden:
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(3.2)

L(n| z14) = L(n | 214-1) + L(n | z), L(n)= log|: P(n) }

1-P(n)

Diese Formulierung der Aktualisierungsregel ermoglicht schnellere Aktualisierungen, da
die Multiplikation durch eine Addition ersetzt wird. Bei vorberechneten Sensormodel-
len miissen die Logarithmen wéihrend des Aktualisierungsschritts nicht berechnet wer-
den. Jeder nicht initialisierte Knoten kann frei sein oder unbekannt in dieser booleschen
Einstellung. Um diese Mehrdeutigkeit zu beheben, werden die freie Volumen im Baum
dargestellt. Diese werden im Bereich zwischen dem Sensor und dem gemessenen erstellt
Endpunkt, z. B. entlang eines mit Raycasting bestimmten Strahls. Bereiche die nicht in-
itialisiert sind, werden als implizit unbekannter Raum modelliert. Abbildung 3.16 zeigt
die Illustration eines Octrees, der freie und besetzte Knoten aus realen Lasersensorda-
ten enthélt (Links: Pointclouds, aufgenommen in einem Korridor mit einem kippbaren
Laser-Entfernungsmesser. Mitte: Aus den Daten generierter Octree, der nur belegte Voxel
anzeigt. Rechts: Visualisierung des Octree mit besetzten Voxeln (dunkel) und freien Vo-
xeln (weif}). Die freien Bereiche werden erhalten, indem der Raum auf einem Strahl vom
Sensorursprung zu jedem Endpunkt freigegeben wird. Verlustfreies Beschneiden fiihrt zu
Blattknoten unterschiedlicher Grofle, die vor allem in den freien Bereichen rechts sichtbar
sind). Die boolesche Belegungszustinde oder diskrete Beschriftungen ermdoglichen eine
kompakte Darstellung des Octree. Wenn alle Kinder (Unterknoten) eines Knotens den
gleichen Zustand haben (besetzt oder frei), konnen sie weggeschnitten werden. Dies fiihrt
zu einer wesentlichen Verringerung der Anzahl der Knoten, die im Baum gepflegt werden

miissen.

Abbildung 3.16: OctoMap-Auflosung[5]
Zusammenfassend lassen sich fiir die OctoMap-Bibliothek im Wesentlichen folgende Vor-
teile gegeniiber anderen Map-Bibliotheken wie Pointclouds und Elevationmap festhalten:

Vollstéandiges 3D-Modell: Die Karte kann beliebige Umgebungen ohne vorherige An-

nahmen modellieren. Die Darstellung modelliert belegte Raum sowie freien Raum.
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Unbekannte Bereiche der Umgebung werden implizit in der Karte codiert. Da die
Unterscheidung zwischen freiem und besetztem Raum fiir eine sichere Roboterna-
vigation wesentlich ist, sind Informationen iiber unbekannte Bereiche von entschei-
dender Bedeutung z. B. fiir die autonome Erkundung einer Umgebung.
Aktualisierbar: Es ist jederzeit moglich, neue Informationen oder Sensorwerte hin-
zuzufiigen. Das Modellieren und Aktualisieren erfolgt auf probabilistische Weise.
Dies erklédrt Sensorrauschen oder Messungen, die aus dynamischen Verdnderungen
der Umgebung resultieren, z. B. aufgrund dynamischer Objekte. Dariiber hinaus
konnen mehrere Roboter zu einer Karte beitragen, und eine zuvor aufgezeichnete
Karte kann um neu erkundete Gebiete erweitert werden.

Flexibilitdt: Der Umfang der Karte muss nicht im Voraus bekannt sein. Statt-
dessen wird die Karte nach Bedarf dynamisch erweitert. Die Karte hat mehrere
Auflésungen, so dass beispielsweise ein Planer auf hoher Ebene eine grobe Kar-
te verwenden kann, wihrend ein lokaler Planer méglicherweise mit einer feinen
Auflésung arbeitet. Dies ermoglicht auch effiziente Visualisierungen, die von gro-
ben Ubersichten bis hin zu detaillierten Nahansichten skalieren.

Kompaktheit: Die Karte wird sowohl im Speicher als auch auf der Festplatte effizi-
ent gespeichert. Es ist moglich, komprimierte Dateien fiir die spétere Verwendung
oder den bequemen Austausch zwischen Robotern bei beschrinkter Bandbreite zu

generieren [5].

3.5 FCL

Eine der Hauptaufgaben bei der Pfadplanung fiir mehrere Drohnen besteht in der Er-
kennung drohender Kollisionen. Fiir diese Aufgabe wurde die Flexible Collision Libra-
ry entwickelt und im Jahr 2012 bei Jia Pan vorgestellt. Aus Anwendungssicht ist die
FCL darauf ausgelegt, einheitliche und erweiterbare Schnittstellen fiir Kollisionen und
Néherungsberechnungsalgorithmen bereitzustellen. Konzipiert wurde sie dariiber hinaus
zur Unterstiitzung verschiedener Datendarstellungen, einschliellich Dreiecksgitter und be-
kannter Formprimitive (z. B. Kugel, Zylinder). Um diese Ziele zu erreichen, modelliert
die FCL alle Kollisionen und Annéiherungsabfragen zwischen zwei Objekten als Abfrage-
prozess entlang einer hierarchischen Struktur. Wie Abbildung 3.17 zeigt, wird der FCI-
Abfrageprozess in drei Schritten ausgefiihrt [6].

Objektdarstellung: Objekte werden durch eine hierarchische, fiir spezifische Ab-
fragen geeignete Struktur dargestellt. So werden etwa geometrische Grundformen

(z. B. Kegel, Zylinder, Kugeln) von Knoten ersetzt, die einstufige Hierarchie mit
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Abbildung 3.17: FCL-Architektur [6]

der entsprechenden Begrenzung sind. Beliebige geometrische Objekte werden un-
ter Verwendung einer Begrenzungsvolumenhierarchie dargestellt. Die hierarchische
Struktur und die Konfiguration des Objekts werden in einer Struktur namens Col-
lisionObject erstellt, das auch die Formdarstellung verformbarer Modelle aus dem
vorherigen Zeitschritt enthélt.

Die Initialisierung des Abfrageknotens: Im Abfrageknoten werden die vollstéandigen
Informationen, die fiir eine bestimmte Abfrage erforderlich sind, gespeichert. Die
Informationen unterscheiden sich von verschiedenen Objektdarstellungen. Fiir eine
kontinuierliche Kollisionsabfrage miissen z. B. die Objektkonfiguration und Form-
darstellung fiir den vorherigen Zeitrahmen gespeichert werden. Auflerdem kann der
Abfrageknoten die Strategie der Abfrage entscheiden. Erfordert beispielsweise der
Knoten nur eine Ja-Nein-Antwort erfordert, stoppt die Kollisionsabfrage, sobald ei-
ne Kollision gefunden wurde. Eine solche vorzeitig beendete Strategie ist auf Tren-
nungsabstandsabfragen nicht anwendbar.

Hierarchieabfragen: Nach der Initialisierung des Abfrageknotens wird die Abfra-
ge die hierarchische Struktur durchlaufen, um eine bestimmte Kollisions- oder

Néherungsobjekte zu finden.

In Abbildung 3.17 zur FCL-Architektur repréasentieren die schwarzen Pfeile die Daten-

fliisse, einschlieflich Aufbau der hierarchischen Struktur fiir jedes Objekt und Kollisions-

manager fiir mehrere Objekte. Die roten Pfeile stehen fiir Algorithmusfluss, einschliellich

Vorbereitung des Abfrageknotens und hierarchischer Abfrage. Die Kollisionsabfragen fiir

artikulierte Koérper oder Umgebungen mit mehreren beweglichen /verformbaren Objekten
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miissen effizient ausgefiihrt werden. In der FCL geschieht dies durch den Kollisionsmana-
ger, der den SaP fiir die Kollisionserkennung mit N-Kérpern Algorithmus verwendet zur

Behandlung solcher Szenarien fiir verschiedene Abfragen.

3.6 Cplex

Da diese Arbeit sich mit dem MAPF-Problem befasst, geht es um die Pfadplanung fiir jede
Drohne zur Vermeidung von Kollisionen. In die Planung miissen auflerdem zusétzliche Ein-
schrankungen einbezogen werden, z. B. Hindernisse, die Raumbegrenzung, die Geschwin-
digkeit, die Kapazitat der Batterie, Ausgangspunkt und Endpunkt usw. Das MAPF-
Problem kann in eine quadratische Programmierung (QP) umgewandelt werden. Zur Ver-
besserung der Recheneffizienz der QP wird fiir diese Arbeit das IBM ILOG CPLEX Opti-
mization Studio verwendet (meist schlicht bezeichnet als CPLEX). Es handelt sich dabei
um ein Programmsystem zur Modellierung und Loésung von Optimierungsproblemen mit-
hilfe mathematischer Optimierung sowie der Constraint-Programmierung. CPLEX wurde
1987 von Robert Bixby als Implementierung des Simplex-Verfahrens zur Losung linearer
Optimierungsprobleme in der Programmiersprache C entwickelt. Es wurde erstmals im
Jahr 1988 durch die von Bixby und Janet Lowe gegriindete CPLEX Optimization Inc.
kommerziell vertrieben und weiterentwickelt. Als einer der Marktfiithrer im Bereich Opera-
tions Research wurde die CPLEX Optimization Inc. im Jahr 1997 durch ILOG aufgekauft.
Neben einem kommandozeilen-basierten Solver stellt CPLEX auch die Modellierungsspra-
che OPL und umfangreiche Bibliotheken mit Anbindung an die Programmiersprachen C,
C++, Java und Python bereit. CPLEX Optimizer bietet flexible, leistungsfiahige Solver
fiir die mathematische Programmierung, die lineare Programmierung, die gemischt ganz-
zahlige Programmierung, die quadratische Programmierung und quadratisch beschréinkte
Programmierungsprobleme. Die Solver zeichnen sich durch einen verteilten parallelen Al-
gorithmus fiir gemischt ganzzahlige Programmierung aus, um fiir die Losung schwieriger

Probleme mehrere Computer nutzen zu koénnen.

Wie bereits erwéhnt, ist die quadratische Programmierung ein Modell, in dem die Ein-
schrankungen linearer Art sind, die Zielfunktion aber einen oder mehrere quadratische
Terme enthalten kann. Wenn solche Probleme konvex sind, 16st CPLEX sie normalerweise
effizient in Polynomzeit. Nicht-konvexe QP sind jedoch ziemlich hart. Theoretisch werden
sie als NP-hart charakterisiert. CPLEX wendet verschiedene Ansétze auf diese Probleme
an, beispielsweise Ansétze Barriere-Algorithmen oder Verzweigungs- und gebundene Al-
gorithmen. Insbesondere in der Branche und gebunden Ansatz gibt es keine theoretische

Garantie fiir die Komplexitit eines solchen Problems. Folglich kann die Losung dieses
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Problems nichtkonvexer QP mehr Rechnenzeit erfordern als die Losung einer konvexen

QP von vergleichbarem Wert.
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In diesem Kapitel werden verschiedene Algorithmen fiir die Pfadplanung und Trajek-
torienverarbeitung im Rahmen der Arbeit erliutert. Zuerst werden in einer Ubersicht
verschiedene Algorithmen fiir dreidimensionale Routenplanung zusammengefasst. Dann
werden die in dieser Arbeit verwendeten Algorithmen zur Routenplanung vorgestellt,
namlich RRT, RRT*, CBS und A*. Am Ende des Kapitels wird ein Algorithmus namens

Bernsteinpolynom zur Trajektorienverarbeitung eingefiihrt.

4.1 TUbersicht der Algorithmen von Routen plannung

Algorithmen fiir die 3D-Pfadplanung sind seit dem letzten Jahrhundert entstanden. Inzwi-
schen gibt es viele Methoden dreidimensionaler Routenplanung, angewendet fiir verschie-
dene Roboter und Umgebungen. z. B. Rapidly-exploring random tree (RRT), Probabilistic
Road Maps (PRM), kiinstliches Potenzialfeld und Mixed-Integer-Programmierung. Ent-
sprechend ihrer Eigenschaften lassen sich die Algorithmen in fiinf Kategorien einordnen,
wie in Abbildung 4.1 dargestellt [42].

3D path planning algorithms

Node Mathmtic

i Multifusi
Sampling based model Bioinspired : ubz:secsllon
based optimal based algorithms .
algorithms . . algorithms
algorithms algorithms

Abbildung 4.1: Klassifizierung von Pfadplanung

Stichprobenbasierte Algorithmen (Englisch: Sampling-based algorithms) benotigen einige
bekannte Umweltinformationen in der mathematische Darstellung, um den Arbeitsbereich
zu beschreiben. Diese Methode tastet die Umgebung normalerweise als Reihe von Knoten
oder Zellen oder in anderen Formen ab. Dann werden die Stichprobeknoten mit den

einschréankenden Faktoren kombiniert oder einfach nach dem Zufallsprinzip gesucht, um
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einen realisierbaren Pfad zu erhalten. Die Elemente stichprobenbasierter Algorithmen sind
in Abbildung 4.2 dargestellt.

Sampling based algorithms

Active Passive

PRM,
k-PRM,

Artificial 3D

Potential Voronoi,

RRT,
DDRRT,

s-PRM(P
RM™), and
so forth

Field, RRG,

and so forth and so forth

RRT",
and so forth

Abbildung 4.2: Stichprobenbasierte Algorithmen

Das Diagramm unterteilt die stichprobenbasierten Algorithmen in zwei Gruppen: aktiv
und passiv. Aktiv umfasst Algorithmus wie RRT, die den machbaren Pfad zum Ziel durch
ihr eigenes Verarbeitungsverfahren erreichen kénnen. Passiv bedeutet Algorithmen wie
PRM, die nur ein StraBlennetz vom Start bis zum Ziel erzeugen, das viele mogliche Pfade
enthélt. Nach Kombination von Suchalgorithmen wird der bestmogliche Pfad gefunden.
Algorithmen, die nicht selbsténdig den besten Pfad finden kénnen (d. h. abhingig von

anderen Algorithmen sind), werden als passiv klassifiziert.

Knotenbasierte optimale Algorithmen(Englisch: node-based optimal algorithms) teilen die
Eigenschaft Stichprobenbasierter Algorithmen, die unter einer Reihe von Knoten (Zelle)
in der Karte untersuchen. Allerdings wird hier die Karte mit einer zerlegten Grafik er-
setzt. Deshalb kann diese Methode immer einen optimalen Weg finden. Abbildung 4.3
zeigt die typischen Elemente knotenbasierter optimaler Algorithmen. LPA* ist dabei der
Algorithmus fiir lebenslange Planung A*, eine sich wiederholende Version von A* (d.
h. mit der Fahigkeit, mit dynamischen Bedrohungen umzugehen). Basierend auf LPA*
wird D* vorgeschlagen, das sich mit dynamischen Bedrohungssituationen befasst. Die
Dijkstra-Algorithmen A* und D* werden traditionell als diskrete optimale Planung oder

StraBlenkartenalgorithmen klassifiziert.

Auf mathematischen Modellen basierende Algorithmen umfassen lineare Algorithmen
und optimale Steuerung. Diese Methoden modellieren die Umgebung (kinematische Ein-

schrankungen) sowie das System (dynamisch) und die Kostenfunktion, die mit den ki-
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Node based optimal algorithms

Dijkstra’s A", LPA",
algorithm

Theta™, D",
and

lazy Theta®

D" -Lite,
and so forth

and so forth

Abbildung 4.3: Knotenbasierte Algorithmen

nematischen und dynamischen Beschrinkungsgrenzen verbunden ist, um eine optimale
Losung zu erreichen. Die Elemente auf mathematischen Modellen basierender Algorith-

men werden in Abbildung 4.4 vorgestellt.

Mathematic model
based algorithms

A}

{ L1nearalgor1thms l [ Optimal control

NLP

Flatness based MéLP
and so forth afI(])I'tflo

Abbildung 4.4: Auf mathematischen Modellen basierende Algorithmen

Dabei verwendet die auf Ebenheit basierende Methode, die zuerst von Chamseddine vor-
geschlagen wurde, verschiedene Ebenheit und die Linerarisierung der nichtlinearen kino-
dynamischen Zwénge, um die Kontrollebenheit entlang des Referenzpfades sicherzustellen.

Die Mixed-Integer-lineare-Programmierung (MILP) zeichnet sich durch eine starke Mo-
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dellierungsfihigkeit aus. Die binér-lineare Programmierung (BIP) ist ein Sonderfall der
linearen Programmierung, wobei die Variablen nur einen ganzzahligen Wert Null oder
Eins haben.

Bioinspirierte Algorithmen stammen aus der Nachahmung biologischer Verhaltensweisen
zur Losung von Problemen. Diese Planungsmethoden lassen den Prozess des Aufbaus einer
komplexen Umgebung aus und {iberwinden die Schwéche der auf mathematischen Model-
len basierenden Algorithmen, die bei der Losung von NP-harten Problemen mit grofler
Anzahl von Variablen und nichtlinearen Zielfunktionen héufig fehlschlagen. Abbildung 4.5
prasentiert eine Reihe typischer aktueller Methoden.

Bioinspired

algorithms

( Neural network W [ Evolutionary algorithms ‘

) )
GA MA PSO ACO SELA
and so and so and so and so and so
forth forth forth forth forth

Abbildung 4.5: Bioinspiriert Algorithmen

Dabei ist der genetische Algorithmus (GA) auch die bekannteste populationsbasierte
numerische Optimierungsmethode. Der memetische Algorithmus (MA) ist ein popula-
tionsbasierter heuristischer Explorationsansatz fiir kombinatorische Optimierungsproble-
me. Die Partikelschwarmoptimierung (PSO) ist ein populationsbasierter stochastischer
Optimierungsalgorithmus, und die Ameisenkolonie-Optimierung (ACO) ahmt das Ver-
halten der Ameise beim Finden des kiirzesten Weges mit Pheromoninformation nach. Der
Leapfrog-Algorithmus (Englisch: shuffled frog-leaping algorithm (SFLA)) ist eine Kombi-
nation von MA und PSO ist. Bei bioinspirierten Algorithmen wird zwischen dem Evolutio-
nary Algorithm (EA) und dem neuronalen Netz (NN) unterschieden, die auf verschiedenen

Ebenen analysiert werden.

Multifusion ist ein in jiingster Zeit entstehender Ansatz zur Verbesserung der Leistung
von 3D-Pfad-Planungsalgorithmen. Die Algorithmen lassen sich miteinander kombinieren,
um einen optimalen Weg zu planen (bessere Echtzeit oder optimale Leistung). Kiinstliche

Potenzialfeldalgorithmen fallen z. B. normalerweise hinein lokale Minima ohne Naviga-
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tionsfunktion oder andere Tricks. Probabilistische Straflenkarten konnen keine optimale

Losung erzeugen. Eine Kombination beider Algorithmen kénnte die Nachteile beseitigen.

4.2 Routenplanungsalgorithmen in dieser Arbeit

Wie oben beschrieben, gibt es viele Algorithmen, die auf verschiedenen Grundprinzipien
beruhen und je eigene Vor- und Nachteile aufweisen. In dieser Arbeit werden die Algo-
rithmen RRT, CBS (conflict-based search) und A* zur Pfadplanung in drei Dimensionen

genutzt. Im Folgenden werden deren Grundlagen und Eigenschaften erklért.

4.2.1 RRT, RRT* und informierter RRT*

Der RRT Algorothmus wurde von LaValle vorgeschlagen [43]. Er versucht, die Probleme
der Pfadplanung unter holonomen, nichtholonomen und kinodynamischen Bedingungen
zu losen. Der RRT durchsucht den Konfigurationsraum schnell, um einen Baum zu ge-
nerieren, der Start- und Zielknoten verbindet. In jedem Schritt wird ein neuer Knoten
abgetastet. Wenn die Erweiterung vom abgetasteten zum néchsten Knoten erfolgreich ist,
wird dem Baum ein neuer Knoten hinzugefiigt. Bei Anwendung dieser Methode in einer
3D-Umgebung, wird normalerweise davon ausgegangen, dass ein 3D-Konfigurationsraum
x = C' vorhanden ist. Der Konfigurationsraum besteht aus zwei Teilen: einem festen Hin-
dernisbereich x.s C X, der vermieden werden muss, und einem hindernisfreien Bereich
Xfree € X, in dem sich die Roboter aufhalten miissen. Entsprechend des Konfigurations-
raums enthélt ein Pfadzustands-(oder Scheitelpunkt-) Satz P alle Abtastscheitelpunkte,
die durch den RRT-Explorationsprozess erzeugt werden. Um den Algorithmus zu imple-
mentieren, miissen die folgenden Schritte befolgt werden (sieche in Abbildung 4.6). Die
Cyan-Kreise stellen Hindernisregionen dar, die nicht passiert werden koénnen. v ist die
maximale Schrittverlangerungslinge geméfl den angegebenen Einschrankungen und Ko-

stenfunktionen.

Schritt 1: Zuerst gibt es den Anfangszustand X;,; € Xfre in P als ersten Punkt.
Dann wird ein Punkt zuféllig in xj.. frei gewéhlt. Abbildung 4.6 zeigt zwei
Zustande, die Z,4nd0m1 UNA Ty andom2-

Schritt 2: Dann wird ein Folgezustand, der auf dem neu erzeugten Zustand ,.,qom
in P basiert und einen festen Abstand zu diesem hat, ausgewéhlt. Der Punkt x,,.,,
wird als Elternzustand von x,,,4,, betrachtet.

Schritt 3: Z,4ndom St der Zustand, der die Richtung angibt, in die der néachste Punkt

gehen soll. Unter der Beriicksichtigung der kinodynamischen Einschrénkungen wird
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ein Regelungsfaktor in einer Kostenfunktion ¢ = f{x,y, z) hinzugefiigt. Geméis den
Einschrénkungen r und der Kostenfunktion ¢ wird der erreichbare Zustand x,,.,,
erstellt. Eine Priifung ermittelt, ob x,.,, frei ist. Wenn es sich in x s, befindet, wird

es dem Pfad P hinzufiigt. Andernfalls wird es weggelassen.

. Xrandom1

X random?

Abbildung 4.6: RRT

In Abbildung 4.6 liegt, der Punkt z,.,; im Hindernis. Deshalb ist die Richtung nach
Trandom1 Ungiiltig. Die Zustinde x,4n40m1 UNd 01 Werden geloscht. Dann wird durch
Wiederholung von Schritt 2 ein neuer Punkt x,.,40m2 generiert. Nach Wiederholung von
Schritt 3 wird der Punkt z,.,. als giiltiger Punkt gesetzt. Der RRT Algorithmus ist
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folgendermafen konstruiert:

Algorithm 1: RRT
Input: RRT(z;,:;)
Output: 7T = (V, E)
1 T « InitializeTree();
2 T « InsertNode(@, zjnit, T');
3 fori=0t0i=N do

4 Zrand < Sample(i);

5 | Znearest < Nearest(T, 2 4na);

6 | (ZnewU.,) < Steer(znearests Zrand);
7 if Obstaclefree(z,e,, ) then

8 ‘ T « InsertNode (Zpins Znews 1);
9 end

10 end

11 return 77

Nach Einfithrung in die Literatur wurden theoretische Grundlagen des RRT-Algorithmus
vorgestellt, darunter die probabilistische Vollsténdigkeit [44] und die exponentielle Zer-
fallsrate der Ausfallwahrscheinlichkeit [45]. Insbesondere wurde gezeigt, dass der RRT-
Algorithmus fiir Systeme mit verschiedenen Beschriankungen, nichtlinear Dynamik und
nichtholonomer Zwénge sowie fiir rein diskrete oder hybride Systeme effektiv funktioniert.
Zudem hat sich der RRT-Algorithmus auf verschiedenen experimentellen Roboterplatt-

formen bewéahrt.

Wihrend der RRT-Algorithmus in der Praxis gut funktioniert und die Vollsténdigkeit der
Losung garantieren kann, besteht das Problem, dass RRT Monte-Carlo-Zufallsstichproben
nutzt, die jedoch kaum auf die Qualitiat der Ergebnisse achten. Es ist erwiesen, dass RRT-
Algorithmen nicht asymptotisch optimal sind. Die Methode benétigt viel Zeit, um in
iiberfiillten Umgebungen Auswege zu finden. Abbildungen 4.7, 4.8 und 4.9 zeigen RRT-
Simulationen. Darin zeigt sich, dass die Erweiterung des RRT-Algorithmusbaums nicht
optimal, vollig zuféllig und ungerichtet ist. Wenn die Pfadplanung in einer komplexen
Umgebung mit dichten Hindernissen oder engen Kanélen durchgefiihrt wird, erhéht sich
die Berechnungszeit des Algorithmus erheblich, und der Algorithmusbaum weist mit zu-
nehmender Pfadldnge eine grofie Redundanz auf. Abbildungen 4.8 und 4.9 zeigen, dass
der giiltige Pfad von Anfang bis Ende durch einen engen Korridor gehen muss. Nur wenn
die Zufallsstichproben in engen Korridoren liegen, kann dar RRT-Baum effektiv erweitert

werden.

Um die Qualitdat der Ergebnisse zu erhéhen, wird der erweiterte RRT-Algorithmus vor-
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BRT Simulation
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Abbildung 4.7: RRT Simulation [7]
120 . . HRT Slmula:cmn . . _
— Destination
100 1 |—— 0Obstacles
} : seg Generated Path
BO | 1 |e®e Starting Position
e | i
a0l i
20 - I ] - 1
|
0 9 i
_zﬂ i i i i i i
—20 0 20 40 B0 a0 100 120

Abbildung 4.8: RRT Simulation [7]

gestellt, der als RRT*-Algorithmus bezeichnet wird und eine signifikante Verbesserung
der Prézision der RRT erreicht. Es wird gezeigt, dass RRT* eine asymptotisch subop-
timale Losung liefert. Zum Unterschied von RRT werden die wahrscheinliche schlech-
te Verbindungen im RRT*-Baum entfernt. Dadurch werden die Losungen so optimiert,
dass sie kostengiinstiger als RRT sind. RRT* erbt alle Eigenschaften von RRT und
funktioniert dhnlich wie RRT. Es wurden jedoch zwei optimierte Funktionen eingefiihrt,
die als Nahe-Nachbar-Operationen(Englisch: near neighbor search) und Neuverbindung-
Operation (Englisch: rewire) bezeichnet werden. Die Nahe-Nachbar-Operation findet den
besten Elternknoten fiir den neuen Knoten, bevor sie in den Baum eingefiigt wird. Die-
ser Vorgang wird im Bereich einer Kugel mit dem Radius (R) durchgefiihrt. Durch die

Neuverbindung-Operation wird der Baum innerhalb dieses Radius des Bereichs k neu
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BRT Simulation
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Abbildung 4.9: RRT Simulation [7]

erstellt, um die Kosten zwischen den Baumverbindungen zu minimieren [46][47].

Wenn mit dem Baum ein zufilliger Knoten hinzugefiigt wird, wahlt der RRT den néchsten
Nachbarn als Elternknoten fiir diesen neuen Knoten aus. RRT* aber wihlt den besten
Nachbarn als Elternknoten fiir den neuen Knoten aus. Beim Finden des néchsten Nach-
barn beriicksichtigt RRT* alle Knoten innerhalb einer Nachbarschaft der Zufallsstichpro-
be. Hier wird die Kostenfunktion (p) definiert, um die Kosten des eindeutigen Pfades von
Xinit 70 einem beliebigen Zustand p € P darzustellen. Zur Initialisierung wird der Wert
von Kosten(Xj,;;) auf null gesetzt. RRT* ermittelt dann die Kosten fiir die Verbindung zu
jedem dieser Knoten. Der Knoten mit den niedrigsten Verbindungskosten zum Erreichen

der Zufallsstichprobe wird als Elternknoten ausgewihlt und dem Baum hinzugefiigt [48].
Der RRT*-Algorithmus beginnt auf die gleiche Weise wie der RRT-Algorithmus. Bei der

Auswahl des néchsten Nachbarn wihlt der Algorithmus jedoch auch Knoten Q... im
Baum aus, die sich in der Néhe der Zufallsstichproben- ¢,,,q befinden. Zeile 6 des Algo-
rithmus 2 ist der erste Hauptunterschied zwischen RRT* und RRT. Anstatt den néchsten
Nachbarn zur Zufallsstichprobe auszuwéhlen, wihlt die Funktion ChooseParent() den be-
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sten Elternknoten aus der Nachbarschaft der Knoten aus [46].

Algorithm 2: RRT*
Input: (gp)
Output: 7 = (V. E)
1 T « InitializeTree();
2 T « InsertNode(@, ¢init, T');
3 for k=1 to N do
4 Qrand < RandomSample(k);

5 Qnearest < NeareStNeighbor(QTand7 Qnei", T)a
6 Qmin < ChooseParent(Qrunda Qneara Qnearests AQ)a
7 T « InsertNOde(Qmina Qrands T)7

8 T « ReWiI‘G(T, Qnea’r’ Amins QTand);
9 end

10 return 77

Algorithmus 3 beschreibt die Funktion ChooseParent(). Diese Funktion verwaltet den
Knoten mit den niedrigsten Gesamtkosten fiir das Erreichen von ¢,.,q. In Zeile 1 von
Algorithmus 3 wird der néchste Nachbar, ¢,.qrest, als der Nachbar mit den niedrigsten
Kosten q,,;, betrachtet. In Zeile 2 werden die Kosten, die mit dem Erreichen der neuen
Zufallsstichprobe ¢,,,q unter Verwendung von ¢,cq,es; als Eltern verbunden sind, als die
aktuell niedrigsten Kosten C,,;,, gespeichert. Der Algorithmus durchsucht dann die Menge
der Knoten in der Néhe von @,4,4. Die Funktion Steer() in Zeile 4 von Algorithmus 3 gibt
einen Pfad vom nahegelegene Knoten ¢,.q, 20U @qnq zuriick. Wenn dieser Pfad frei von
Hindernissen ist und niedrigere Kosten als die aktuellen Mindestkosten hat, wird der nahe
gelegene Knoten zum besten Nachbar, ¢,,;,, und diese Kosten werden zu den niedrigsten
Kosten ¢,,;, (Zeilen 7-9 von Algorithmus 3). Wenn alle nahegelegenen Knoten untersucht
wurden, gibt die Funktion den besten Nachbarn zuriick. Der neue Zufallsknoten wird mit
Gmin als Elternknoten in den Baum eingefiigt. Der nédchste Schritt ist der zweite grofie
Unterschied zwischen dem RRT*- und dem RRT-Algorithmus. Zeile 8 von Algorithmus 2
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ruft die Funktion Rewire() auf [46].

Algorithm 3: RRT*-ChooseParent

IDPUt: (QTanda Qnearv Qnearest> AQ)
Output: ¢,

1 Gmin < Qnearest;
2 Cin < COSt(Qnearest) + C(Q’rand) ;

3 for QTLGGT’ e Qnear do

4 | Gpan < Steer(Gnears Grands 29);

5 if ObstacleFree(qyq,) then

6 Cnew < CO8t(Gnear) + (Gparn);
7 if ¢,ew < Cpin then

8 Crmin < Cnews

9 Amin < Qnear;

10 end

11 end
12 end

13 return ¢n;

Die in Algorithmus 4 beschriebene Rewire-Funktion dndert die Baumstruktur basierend
auf dem neu eingefiigten Knoten q,.,,,4- Diese Funktion verwendet wiederum die nahe Nach-
barschaft der Knoten ),,.,, als Kandidaten fiir die Neuverbindung. Die Rewire-Funktion
verwendet die Steer-Funktion, um den Pfad abzurufen. Der Pfad beginnt am neuen Kno-
ten ¢rqnqg und geht zum nahe gelegenen Knoten ¢,,.,.. Wenn dieser Pfad frei von Hin-
dernissen ist und die Gesamtkosten dieses Pfads niedriger als die aktuellen Kosten fiir
das Erreichen von ¢,,.q, sind (Zeile 3 von Algorithmus 3), ist der neue Knoten ¢,,,q ein
besserer Elternknoten als der aktuelle Elternknoten von ¢,,.,,. Der Baum wird dann neu
verkabelt, um die Verbindung zum aktuellen Elternknoten von ¢, zu loschen und eine
Verbindung hinzuzufiigen, um ¢,,,4 zum Elternknoten von ¢,,.,, zu machen. Dies erfolgt
mit der Funktion ReConnect in Zeile 4 von Algorithmus 4. Die Funktionen ChooseParent
und Rewire dndern die Struktur des Suchbaums im Vergleich zum RRT-Algorithmus. Der
vom RRT generierte Baum weist Verzweigungen auf, die sich in alle Richtungen bewegen.

Der vom RRT*-Algorithmus erzeugte Baum weist selten Zweige auf, die sich in Richtung
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des Elternknoten zuriickbewegen [49].

Algorithm 4: RRT*-Rewire
Input: (T, Quear: Gmin> Grand)
Output: T

for ¢car € Qnear do

2 Qpath « Steer(Qrand,qnear);

3 if ObstacleFree(qpan) and Cost(qrana) + (Gpatn) < Co5H(¢peqr) then

=

4 ‘ T « ReConnect(q,and; Gnear, ')

5 end
6 end

7 return T

Die Funktion ChooseParent() stellt sicher, dass Pfade erstellt werden und sich immer vom
Startort entfernen [50]. Die Funktion Rewire() &ndert die interne Struktur des Baums, um
sicherzustellen, dass interne Knoten keine unnétigen Schritte auf einem erkannten Pfad
hinzuftigen. Die Funktionen ChooseParent() und Rewire garantieren, dass die erkannten
Pfade asymptotisch suboptimal sind, da diese Funktionen immer die Kosten minimieren,

um jeden Knoten innerhalb des Baums zu erreichen[46].

Abbildung 4.10 verdeutlicht dies anhand eines Beispiels. Der urspriingliche RRT-Baum
dhnelt der linken Abbildung. Der gelbe Knoten repréasentiert ¢,,,q, der aus den Zufalls-
stichproben generiert wird. Es gibt vier Knoten in der Ndhe von ¢,,,q als Qeqr- Nach
der Kostenberechnung und der Neuverbindung wird die Verbindung zwischen X; und X,

geloscht. Die Knoten X, und ¢,4,4 sind verbunden.

Abbildung 4.10: RRT*

Abbildung 4.11 zeigt die Simulation von RRT und RRT* mit derselben Umgebung. Beide
Algorithmen wurden mit derselben Probensequenz 20.000 Mal ausgefiihrt. Die Kosten fiir
den besten Pfad in der RRT und der RRT* betrugen 21,02 und 14,51 Sekunden. Es ist
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ersichtlich, dass der RRT*-Algorithmus eine asymptotisch suboptimale Losung erzeugt.
Zwar verbessert RRT* die Ergebnisse gegeniiber dem RRT-Algorithmus, aber der RRT*
basiert genau wie RRT auf Zufallsstichproben. Das heifit, dass die Probenahme jeder
Iteration gleichméfBig iiber die gesamte Umgebung verteilt ist. Wie in der Abbildung 4.11
zu sehen, sind die Probennahmen von RRT und RRT* gleichméflig auf der Karte verteilt,
anstatt in der Nahe der optimalen Pfade konzentriert zu sein. Probenahmen weit entfernt
vom optimalen Pfad sind meist redundant. Wenn die Umgebung relativ weitlaufig ist oder

die Planung in hohen Dimensionen erfolgt, ist RRT* ineffizient.

e '\3*,*5?_‘ i};u —
S S s %‘@ o ’ﬁif{f"‘i{ 5 [
2 4 6 8

-2

(a)

Abbildung 4.11: RRT und RRT* [8]

Daher wird im Folgenden der informierte RRT* vorgestellt, um die Vorteile der infor-
mierten inkrementellen Suche zu demonstrieren. Der informierte RRT* verhélt sich wie
RRT*, bis eine erste Losung gefunden wird. Danach werden die Stichproben nur aus der
Teilmenge von Zusténden abgetastet, die durch eine zuldssige Heuristik definiert sind, um
nach Moglichkeit die Losung zu verbessern. Diese Teilmenge gleicht implizit die Ausbeu-
tung mit der Exploration aus und erfordert keine zusétzliche Abstimmung (d. H. es gibt
keine zusétzlichen Parameter) oder Annahmen (d. H. alle relevanten Homotopieklassen

werden durchsucht).

Algorithmus 5 ist ein Beispielalgorithmus mit direkter, informierter Abtastung, Informed
RRT*. Es fiigt dem zuvor dargestellten RRT*-Algorithmus die Zeilen 3, 6, 7, 30 und 31
hinzu. Wie RRT*, sucht dieser nach dem optimalen Pfad zu einer Planung durch schritt-
weises Erstellen eines Baums im Zustandsraum 7 = (V, E'), bestehend aus einer Menge
von Punkten V' € Xy, und Kanten F € Xy,.. X X,... Neue Punkte werden hinzugefiigt,
indem der Graph im freien Raum in Richtung zufillig ausgewéhlter Zustdnde vergrofiert

wird. Der Baum wird mit jedem neuen Punkt neu verbunden, sodass die Kosten fiir die
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nahegelegenen Punkte minimiert werden. Der Algorithmus unterscheidet sich von RRT*
darin, dass er sich nach dem Finden einer Losung auf den Teil des Planungsproblems
konzentriert, der die Losung verbessern kann. Dies geschieht durch direkte Abtastung
der ellipsoiden Heuristik. Sobald Losungen gefunden wurden (Zeile 30), fiigt der infor-
mierte RRT* sie einer Liste moglicher Losungen hinzu (Zeile 31). Die Losung der nied-
rigsten Kosten wird verwendet (Zeile 6), um X7 direkt zu berechnen und abzutasten

(Zeile 7). Wie iiblich wird das Minimum einer leeren Liste als unendlich angenommen.
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Algorithm 5: Informierter RRT*

InI)Ut : ( L start, xgoal )

Output: 7

1V o« {xstart};

2 B« g

3 Xsoln < 9;

a 7= (V,E);

5 for steration =1 to N do

6 Chest < MANg 1 eX, oin {COSt(xsoln)};

7 Lrand < Sample(xstarh ZLgoal; Cbest);

8 Tnearest < NeareSt(Ta xrand);

9 Lnew < Steer(xnearest,xmnd);

10 if CollisionFree(Z,carest ., ) then

11 Veu {xnew};

12 Xnear « Near(T, Tnews TRRT*);

13 Tmin < Tnearests

14 Cmin < COSt(xmzn) + C'Llne(xnearesta 2jnew);
15 for Yx,.0 € X, ear do

16 Cnew < COSt(xnear) + C°L1ne(xnear7 Inew);
17 if ¢ < Cin then

18 if CollisionFree(X,eqr, Tnew) then
19 Lmin < Tnear;

20 Cmin < Cnew

21 end

22 E<FE {(xmin7$new)} U;

23 for Yx,.0 € X, ear do

24 Cnear < COSt(xnear);

25 Cnew < COSt(xnew) + C'Llne(xnewa mnear);
26 if Chew < Cpear then

27 if CollisionFree(Z ey, Tnear) then
28 Lparent « Parent(xnear);

29 Fe—%f _.

{(Ipa'rentvxnear)}

30 E < EU {(xnewaxnear)};
31 end
32 if InGoalRegion(x,.,) then

33 Xsoln « Xsoln U {xnew};
34 end

35 return 7;
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Sample: Bei zwei Punkten 0, 740 € Xjpee, und einem maximalen heuristischen
Wert, ¢, € R, gibt die Funktion Sample(z trom; 1o, Cmaz) unabhéngige und ver-
teilte Samples aus dem Zustandsraum, x,,., € X, zuriick, so dass die Kosten eines
optimalen Pfades zwischen z,,,, und wz,,, der z,., durchlaufen muss, kleiner als
Cmaz Sind (wie in Algorithmus 6). Bei den meisten Planungsproblemen  f,.o,,, = T gtart,
Tyo = Tgoqr, und die Zeilen 2 bis 4 von Algorithmus 6 werden zu Beginn des Problems
einmal berechnet.

InGoalRegion: Bei einem Punkt x € Xy, gibt die Funktion InGoalRegion den Zu-
stand True zuriick, wenn der Punkt sich in der Zielregion X, befindet, andernfalls
False. Eine gemeinsame Zielregion ist eine Kugel mit dem Radius 7., um dem Ziel.
D. h. Xy = {2 € Xppee | ||z — %oal”z < Tgoal}-

RotationToWorldFrame: Bei zwei Punkten als Brennpunkte eines Hyperellipsoids,
T froms T1o € X, gibt die Funktion RotationToWorldFrame ( from, 1,) die Rotati-
onsmatrix C' € SO(n) von der hyperellipsoid ausgerichteten Koordinate zur Weltko-
ordinate zuriick. Wie bereits erwiahnt, muss diese Rotationsmatrix bei den meisten
Planungsproblemen zu Beginn des Problems nur einmal berechnet werden [9].
Sample UnitNBall: Die Funktion Sample UnitNBall gibt ein einheitliches Sample aus

dem Volumen einer Kugel mit einem Einheitsradius zuriick, d. h. zp,; ~ v(X).

Algorithm 6: Informiertes RRT*-Sample

InPUt3 (xstarta mgoala Cma:):)

Output: z,,,4

1 if ¢4, < 00 then

2 Crin < ”xgoal - xstartHQ )

(xStGTt+ngal) .
3 Teentre < 2 )
4 C « RotationToWorldFrame(Z s¢4,4, Zgoar )
5| 7y e e

( V c%n,am —Cfnm)

6 {701}1:277” — 2 9
7 L(_diag{rl7r27°‘°7rn};

8 Tpan —OampleUnitBall;
9 Trand < (CL:L‘ball + *rcentre) N Xa

10 end
11 Trapd ~ U(X)7

12 return T,qnq4;

Bei jeder Iteration muss der Rewire-Radius rgprs grofl genug sein, um eine fast sichere
asymptotische Konvergenz zu gewéhrleisten, aber klein genug, um einige gefiigige Rewire-

Kandidaten zu erzeugen. Der informierte RRT* tastet die Teilmenge des Planungspro-
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blems, die die Losung verbessern kann, gleichméfiig ab. Aus die informierte Teilmenge
und die zugehorigen Punkten darin werden ein Rewire-Radius berechnet. Dieser aktuali-
sierte Radius reduziert die erforderliche Neuverdrahtung und verbessert die Leistung vom

informierten RRT* weiter.

Der informierte RRT* wird mit dem RRT* bei einer Vielzahl einfacher Planungsprobleme
(Abbildungen 4.12) und zufillig erzeugter Umgebungen verglichen. Die Abbildungen 4.12
a) und 4.12 b) zeigen die Recheneffizienz des RRT* und des informierten RRT*, wobei
die Breite des Hindernisses zufillig ausgewéhlt wurde. In fiinf Sekunden finden beide Al-
gorithmen eine supoptimale Losung. Der informierte RRT* kann immer eine gegeniiber
RRT* signifikant reduzierte Doméne durchsuchen, was sowohl die Konvergenzrate als
auch die Qualitdt der endgiiltigen Losung erhoht. Im Vergleich dazu benétigt bendtigt
der RRT*-Algorithmus (4.12) erhebliche Rechenressourcen fiir die Erforschung von Re-
gionen des Planungsproblems, die die aktuelle Losung mdglicherweise nicht verbessern.
Abbildungen 4.12 ¢) 4.12 d) zeigen, dass beide Algorithmen Pfade durch eine Wand mit
einem 3%-auflermittigen Spalt finden. Durch Fokussieren des Suchraums auf die Teil-
menge von Zustédnden, die eine anfangliche Losung verbessern konnen, die das Hindernis
flankiert, kann der informierte RRT* in vier Sekunden einen Pfad durch die enge Offnung
finden, wiahrend RRT* 12,32 Sekunden benotigt. Abbildung 4.12 d) verdeutlicht, dass die
vom informierten RRT* gesuchte Trajektorie in einer Ellipse konzentriert ist, wihrend die
von RRT* gesuchte Trajektorie divergent ist. Das bedeutet, dass der informierte RRT*-

Algorithmus zielorientiert ist.

Zusammenfassend lasst sich festhalten, dass der informierte RRT* in der Lage ist, nahezu
optimale Losungen mit deutlich weniger Iterationen als der RRT* zu finden. Die direkte
Abtastung der informierten Teilmenge erhcht die Dichte um die optimale Losung schneller
als die globale Abtastung und erhoht daher die Wahrscheinlichkeit, die Losung zu verbes-
sern und die Suche starker weiter zu fokussieren. Im Gegensatz dazu weist RRT* iiber
den gesamten Planungsraum eine gleichméflige Dichte auf und verringert tatséchlich die
Wahrscheinlichkeit, weitere Verbesserungen zu finden. Der informierte RRT* garantiert
die gleiche Wahrscheinlichkeit fiir Vollstandigkeit und Optimalitat wie RRT* und verbes-
sert gleichzeitig die Konvergenzrate und Qualitit der endgiiltigen Losung [9]. Aulerdem
zeigt die Methode weniger Abhéngigkeit von der Zustandsdimension und dem Bereich des
Planungsproblems. In dieser Arbeit wird daher fiir die Pfadplanung in drei Dimensionen

der informierte RRT* verwendet.
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Informed RRT*

AR I IIIII \ \

i,

c) 12,32 Sekunden d) 4,0 Sekunden

Abbildung 4.12: Leistungsvergleich zwischen RRT* und informiertem RRT* [9]

4.2.2 A*-Algorithmus

Der A*-Algorithmus (auch A*-Suche; Englisch: A* search algorithm) dient in der Infor-
matik der Berechnung des kiirzesten Pfades zwischen zwei Knoten in einem Graphen mit
positiven Kantengewichten. Er wurde 1968 von Peter Hart, Nils J. Nilsson und Bert-
ram Raphael beschrieben. Wie der informierte RRT*-Algorithmus, verwendet auch der
A*-Algorithmus eine Heuristikfunktion (Schatzfunktion), um zielgerichtet zu suchen und
damit die Laufzeit zu verringern. Der Algorithmus ist vollstéandig und optimal, d. h., dass

immer eine optimale Losung gefunden wird, falls eine solche existiert [10].

Im Gegensatz zum informierten RRT*-Algorithmus zielt die Heuristik des A*-Algorithmus
nicht darauf ab, mégliche Losungen zu finden, sondern darauf, den Abstand vom Start
zum Ziel zu schitzen. Bei jeder Iteration des Hauptloop muss A* bestimmen, in welche
Richtung ein Pfade erweitert werden soll. Dies geschieht auf Basis der geschétzten Kosten
aus die Schétzfunktion sowie der Knoten der Open List und der Closed List. Die Knoten
sind Punkte in einem Graphen, durch die Pfade verlaufen konnen. Der A*-Algorithmus
untersucht immer jene Knoten zuerst, die wahrscheinlich schnell zum Ziel fithren. Um

den vielversprechendsten Knoten zu ermitteln, wird allen bekannten Knoten x jeweils ein
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Wert f(x) zugeordnet. Dieser entspricht der geschétzten Liange des Pfades vom Start zum
Ziel unter Verwendung des betrachteten Knotens im giinstigsten Fall. Als néchstes wird

der Knoten mit dem niedrigsten f-Wert untersucht.

f(z) = g(x) + h(x) (4.1)

Fiir einen Knoten x bezeichnet g(x) die bisherigen Kosten vom Startknoten aus, um z zu
erreichen, wiahrend h(x) die geschiitzten Kosten von x bis zum Zielknoten reprisentiert.
Die verwendete Heuristik darf die Kosten nicht iiberschétzen. Fiir das Beispiel der Weg-
suche ist die Luftlinie eine geeignete Schéitzung. Die tatséchliche Strecke ist nie kiirzer
als die direkte Verbindung. Abbildung 4.13 zeigt die Funktion der Heuristik und die Be-
rechnung des f-Werts. Die Zahlen auf den schwarzen Linien geben jeweils die Entfernung
zwischen zwei Knoten an. Der h-Wert jedes Knotens ist der geschétzte Abstand des Kno-
tens vom Zielknoten. Am Anfang wird der f~-Wert fiir die Knoten a und d berechnet, um
den giinstigsten Knoten auszuwihlen. Dabei ist g(a) gleich 1,5 und g(d) gleich 2. Die
Werte von f(a) und f(d) konnen mit den Werten von h(a) und h(b) verglichen werden.
In Abbildung 4.13 ist f(a) 5,5und f(d) 6,5, also die groBer als f(a). Deswegen wird
der Pfad zuerst in die a-Richtung erweitert. Es werden alle Nachfolgeknoten vom Start-
knoten betrachtet. Fiir den Knoten b wird der Wert von f(b) mit f(d) verglichen. g(b)
ist gleich g(a) zuziiglich des Abstands zwischen a und b, d.h. g(b) ist 3,5 und g(d) ist
2. Im Vergleich zu f(d) ist f(b) noch kleiner. Somit erstreckt sich der Pfad weiter zum
b-Knoten.

2 fla)=15 + 4

fid)=2 + 4.5

fla)=15 + 4
fld)=2 + 4.5

fib)=3.5 + 2
fid)=2 + 4.5

a) A*-Schitzfunktion b) A*-Schitzfunktion

Abbildung 4.13: A*

Die Knoten werden wéhrend der Suche in drei verschiedene Klassen eingeteilt, ndmlich
unbekannte Knoten, bekannte Knoten und abschliefend untersuchte Knoten. Die unbe-
kannten Knoten wurden wéhrend der Suche noch nicht gefunden. Zu ihnen ist noch kein
Weg bekannt. Jeder Knoten (auer dem Startknoten) ist zu Beginn des Algorithmus un-

bekannt. Zu den bekannten Knoten ist ein (moglicherweise suboptimaler) Weg bekannt.
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Alle bekannten Knoten werden zusammen mit ihrem jeweiligen f-Wert in der Open List
gespeichert. Aus dieser Liste wird immer der vielversprechendste Knoten ausgewéhlt und
untersucht. Die Implementierung der Open List hat grofien Einfluss auf die Laufzeit und
wird oft als einfache Prioritdtswarteschlange (z. B. bindrer Heap) realisiert. Zu abschlie-
Bend untersuchten Knoten ist der kiirzeste Weg bekannt. Die abschlieBend untersuchten
Knoten werden in der Closed List gespeichert, damit sie nicht mehrfach untersucht wer-
den. Um effizient entscheiden zu kénnen, ob sich ein Element auf der Closed List befindet,

wird diese oft als Menge implementiert. Die Closed List ist zum Beginn leer [51] [52].

Jeder bekannte oder abschlieBend untersuchte Knoten enthélt einen Zeiger auf seinen (bis-
her besten) Vorgiangerknoten, damit der Pfad bis zum Startknoten zuriickverfolgt werden
kann. Wird ein Knoten x abschlielend untersucht (auch expandiert oder relaxiert), so
werden seine Nachfolgeknoten in die Open List eingefiigt und x in die Closed List aufge-
nommen. Fiir neu eingefiigte Nachfolgeknoten werden die Vorgéngerzeiger auf x gesetzt.
Ist ein Nachfolgeknoten bereits auf der Closed List, so wird er nicht erneut in die Open
List eingefiigt und auch sein Vorgéngerzeiger nicht geédndert. Ist ein Nachfolgeknoten be-
reits auf der Open List, so wird der Knoten nur aktualisiert (f-Wert und Vorgéngerzeiger),

wenn der neue Weg dorthin kiirzer ist als der bisherige.

Sobald der Zielknoten abschlieBend untersucht wurde, endet dieser Durchlauf des Algo-
rithmus. Der gefundene Weg wird mit Hilfe der Vorgéngerzeiger rekonstruiert und aus-
gegeben. Falls die Open List leer ist, gibt es keine Knoten mehr, die untersucht werden
konnten. In diesem Fall terminiert der Algorithmus, da es keine Losung gibt. Bedingt
durch die Vorgingerzeiger wird der gefundene Weg vom Ziel ausgehend riickwirts bis
zum Start ausgegeben. Um den Weg in der richtigen Reihenfolge zu erhalten, kénnen z.
B. vor der Wegsuche Start und Ziel vertauscht werden. Somit wird vom eigentlichen Ziel

zum Start gesucht und die Wegausgabe beginnt beim urspriinglichen Startknoten [53].

Die Diagramme in Abbildung 4.14 zeigen eine Wegfindung um ein Hindernis mittels A*-
Suche. Die graue L-Form stellt das Hindernis dar, durch das der Pfad nicht verlaufen kann.
Der hellgriine Punkt in der oberen rechten FEcke ist das Ziel, und der Startpunkt befindet
sich in der unteren linken Ecke. Bekannte Knoten sind hellblau umrandet, abschlieSend
untersuchte Knoten sind ausgefiillt. Die Farbe letzterer markiert dabei die Entfernung
zum Ziel; je griiner, desto weniger weit ist dieser vom Ziel entfernt. Zu beobachten ist,
dass der A* zuerst in einer geraden Linie in Richtung Ziel strebt, bis er auf das Hindernis
stoft. Erreicht er den Zielknoten, erkundet er zuerst noch alternative Knoten in der Open

List, bevor er terminiert.

Es ist erwiesen, dass der A*-Algorithmus vollstédndig, optimal und optimal effizient ist [52].

D. h. A* expandiert eine minimale Anzahl an Knoten. Allerdings ist es immer schwie-
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Abbildung 4.14: A*-Pfadplanung in zwei Dimensionen mit Gitter [10]

rig, die Heuristikfunktion auszuwéhlen. Ist die Heuristik nicht monoton, erh6ht sich die
Laufzeit exponentiell, da Knoten mehrfach verkniipft werden. Je genauer die Kosten-
abschétzung ist, desto weniger Knoten werden untersucht. Das Einstellen einer guten
heuristischen Funktion kann die Genauigkeit und Recheneffizienz der Losung erheblich
verbessern. Auflerdem ist der begrenzende Faktor bei A* oft nicht die Rechenzeit, son-
dern der Speicherplatz. Da alle bekannten Knoten im Speicher gehalten werden (Open
List und Closed List), ist A* fiir viele Probleme nicht geeignet. Schon beim einfachen
15-Puzzle hat der komplette Graph bereits 16!=20.922.789.888.000 Knoten. Bei einem
entsprechend langen Losungsweg reicht der verfiigbare Speicher nicht aus und A* kann

keine Losung finden [10].

4.2.3 CBS und ECBS

Der RRT-Algorithmus und der A*-Algorithmus konzentrieren sich auf die Routenpla-
nung von Einzelagenten. Im Multi-Agenten Pfadfindung (MAPF) als Forschungsgegen-
stand dieser Arbeit sollen Pfade fiir mehrere Agenten mit jeweils unterschiedlicher Start-

und Zielposition gefunden werden, so dass Agenten nicht kollidieren. Um das MAPF-
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Problem zu lésen,wird im Folgenden die konfliktbasierte Suche (conflict-Based Search,
CBS) vorgestellt, ein zweistufiger Algorithmus, bei dem die Suche auf hoher Ebene in
einem Einschriankungsbaum (Constraint Tree (CT)) durchgefiihrt wird, dessen Knoten
zeitliche und rdumliche Einschriankungen fiir einen einzelnen Agenten enthalten. An je-
dem Knoten im Einschrinkungsbaum wird eine Suche auf niedriger Ebene durchgefiihrt,
um neue Pfade fiir alle Agenten unter den vom Knoten auf hoher Ebene vorgegebenen
Einschrankungen zu finden. Im Gegensatz zu A*-basierten Suchvorgingen, bei denen der
Suchbaum mit der Anzahl der Agenten exponentiell steigt, ist der Suchbaum von CBS
in der Anzahl der Konflikte, die wiahrend des Losungsprozesses auftreten, exponentiell.
Das bedeutet, dass die Komplexitidt des Suchbaums mit steigender Anzahl von Konflik-
ten exponentiell zunimmt. Der Zustandsraum von MAPF ist exponentiell in der Anzahl
der Agenten. Im Gegensatz dazu ist bei einem Einzelagenten-Pfadfindungsproblem der
Zustandsraum in der Diagrammgrofie nur linear. Der CBS-Algorithmus 16st das MAPF-
Problem, indem es in eine grofle Anzahl von Einzelagenten-Pfadfindungsproblemen zerlegt

wird. Jedes Problem ist relativ einfach zu l6sen [11].

Im CBS-Algorithmus wird der Begriff Pfad nur im Kontext eines einzelnen Agenten ver-
wendet. Die Losung bedeutet eine Menge von k Pfaden fiir eine gegebene Menge von k
Agenten. Eine Einschrinkung fiir einen gegebenen Agenten a; ist ein Tupel (a;,v,t), bei
dem es dem Agenten a; verboten ist, den Punkt v zum Zeitpunkt ¢ zu besetzen. Im Verlauf
des Algorithmus werden Agenten mit Einschrinkungen verbunden. Ein konsistenter Pfad
fiir Agent a; ist ein Pfad, der alle seine Einschrankungen erfiillt. Ebenso ist eine konsi-
stente Losung eine Losung, die aus Pfaden besteht, so dass der Pfad fiir Agent a; mit den
Einschriankungen von a; konsistent ist. Ein Konflikt ist ein Tupel (a;, v,t), bei dem Agent
a; und Agent a; zum Zeitpunkt ¢ den Punkt v besetzen. Eine Lésung (von k Pfaden)
ist giiltig, wenn alle ihre Pfade keine Konflikte aufweisen. Eine konsistente Losung kann
ungiiltig sein, wenn diese Pfade trotz der Tatsache, dass sie mit den Einschréinkungen der
einzelnen Agenten iibereinstimmen, immer noch Konflikte aufweisen. Die Schliisselidee des
CBS-Algorithmus besteht darin, eine Reihe von Einschrinkungen fiir jeden Agenten zu
erweitern und Pfade zu finden, die diesen Einschréankungen entsprechen. Wenn diese Pfa-
de Konflikte aufweisen und daher ungiiltig sind, werden die Konflikte durch Hinzufiigen
neuer Einschriankungen gelost. Der CBS-Algorithmus arbeitet auf zwei Ebenen. Auf ho-
her Ebene werden Konflikte gefunden und Einschrankungen hinzugefiigt. Auf niedriger
Ebene werden die Agentenpfade so aktualisiert, dass sie mit den neuen Einschrankungen

iibereinstimmen. Die beiden Teile werden im Folgenden ausfiihrlicher beschrieben.

Auf hoher Ebene durchsucht der CBS-Algorithmus einen CT. Der CT ist ein Bindrbaum,
in dem jeder Knoten N die folgenden Datenfelder enthélt.
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Eine Reihe von Einschrankungen (N.Einschrankungen). Die Wurzel des CT enthélt
einen leeren Satz von Einschrankungen. Das untergeordnete Element eines Knotens
in der CT erbt die Einschrankungen des iibergeordneten Knotens und fiigt eine neue
Einschriankung fiir einen Agenten hinzu.

Eine Losung (N.Losungen). Eine Menge von k& Pfaden, ein Pfad fiir jeden Agenten.
Der Pfad fiir Agent a; muss mit den Einschrankungen von a; {ibereinstimmen. Solche
Pfade werden auf der niedrigeren Ebene errechnet.

Die Gesamtkosten (N.Kosten) der aktuellen Losung (Summe aller Pfadkosten fiir
einen einzelnen Agenten). Der Knoten N in dem CT ist ein Zielknoten, wenn die
N.Losung giiltig ist, wenn also die Pfade fiir alle Agenten keine Konflikte aufweisen.
Die hohe Ebene fiihrt eine Best-First-Suche auf dem CT durch, bei der die Knoten
nach ihren Kosten geordnet sind. Bindungen werden mithilfe einer Konfliktvermei-

dungstabelle (CAT) wie oben beschrieben unterbrochen.

Angesichts der Liste der Einschrankungen fiir einen Knoten N wird die Suche auf niedri-
ger Ebene aufgerufen. Diese Suche gibt den kiirzesten Pfad fiir jeden Agenten a; zuriick,
der mit den Einschréinkungen von a; iibereinstimmt. Sobald fiir jeden Agenten ein kon-
sistenter Pfad in Bezug auf seine Einschrankungen gefunden wurde, werden diese Pfade
in Bezug auf die anderen Agenten validiert. Die Validierung wird durchgefiihrt, indem
die k£ Pfaden simuliert werden. Wenn alle Agenten ihr Ziel ohne Konflikte erreichen, wird
dieser CT-Knoten N als Zielknoten deklariert und die aktuelle Losung (N.Losung), die die
Pfade enthilt, zuriickgegeben. Wenn jedoch ein Konflikt C' = (a;,a;,v,t) fiir zwei oder
mehr Agenten a; und a; wihrend der Validierung gefunden wird, wird die Validierung

angehalten und der Knoten als Nichtzielknoten deklariert.

Bei einem Nichtziel-CT-Knoten N, dessen Losung N.Losung einen Konflikt C), =
(a;, a;,v,t) enthélt, kann der Punkt v zum Zeitpunkt ¢ in jeder giiltigen Losung hochstens
bei einem der Konfliktagenten (a; und a;) besetzt werden. Daher muss mindestens eine
der Bedingungen (a;, v,t) oder (a;,v,t) zu der Menge von Bedingungen in N.Bedingungen
hinzugefiigt werden. Um Optimalitit zu gewéhrleisten, werden beide Moglichkeiten ge-
priift und N in zwei Kinder aufgeteilt. Beide Kinder erben die Menge der Einschrankungen
von N. Das linke Kind 16st den Konflikt durch Hinzufiigen der Einschrinkung (a;,v,t)
und das rechte Kind fiigt die Einschrénkung (a;,v,t) hinzu.

Es ist zu beachten, dass fiir einen gegebenen CT-Knoten N nicht alle kumulativen Ein-
schrankungen gespeichert werden miissen. Stattdessen kann der Knoten nur die letzte
Einschréankung speichern und die anderen Einschrénkungen fallenlassen, indem er den
Pfad von N zur Wurzel iiber seine Vorfahren durchlduft. In d&hnlicher Weise sollte die

Suche auf niedriger Ebene nur nach Agent a; durchgefiihrt werden, der der neu hinzu-
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gefiigten Einschriankung zugeordnet ist. Die Pfade anderer Agenten bleiben dieselben, da
fiir sie keine neue Einschrankung hinzugefiigt wurde. Die hohe Ebene des CBS wird in

Algorithmus 7 dargestellt.

Algorithm 7: Die hohe Ebene von CBS
Input: MAPF Problem

Output: Losungen der MAPF

1 R.constraints = @;

2 R.solution = find individual paths using the low-level();
3 R.cost = SIC(R.solution) insert R to OPEN

4 while OPEN not empty do

5 P « best node from OPEN [/ lowest solution cost;

6 Validate the paths in P until a conflict occurs;
7 if P has no conflict then

8 return P.solution // P is goal;

9 end

10 C « first conflict C,, = (a;,a;,v,t) in P;

11 for agent a; in C' do

12 A « new node;

13 A.constriants « P.constriants +(a;, s,1t);

14 A.solution « P.solution ;

15 Update A.solution by invoking low-level(a;);
16 A.cost = SIC(A.solution);

17 insert A to OPEN;

18 end

19 end

Auf der niedrigen Ebene werden ein Agent, a; und eine Reihe von zugehérigen Ein-
schrankungen eingegeben, um einen optimalen Pfad fiir Agent a; zu finden, der allen
seinen Einschrankungen entspricht. Die anderen Agenten werden ignoriert. Diese Suche
ist dreidimensional, da sie zwei rdumliche Dimensionen und eine Zeitdimension umfasst.
Jeder einzelne Agent-Pfadfindungsalgorithmus kann verwendet werden, um den Pfad fiir
Agent a; zu finden und gleichzeitig zu iiberpriifen, ob die Einschrankungen erfiillt sind. In
dieser Arbeit wird der A*-Algorithmus mit einer perfekten Heuristik in beiden raumlichen
Dimensionen verwendet. Fiir jeden CT-Knoten N wurde ein CAT auf niedriger Ebene
verwendet. Er wird durch die aktuellen Pfade des Knotens N initialisiert. Wenn zwei
Zusténde auf niedriger Ebene dieselben f-Werte haben, wird der Zustand mit der gering-
sten Anzahl von Konflikten im CAT bevorzugt. Dies fithrt zu einer Losung von hoherer

Qualitdt (weniger widerspriichliche Agenten) fiir jeden Knoten auf hoher Ebene.
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4.2 ROUTENPLANUNGSALGORITHMEN IN DIESER ARBEIT

Abbildung 4.15 zeigt ein Beispiel, in dem zwei M&ause zu ihren jeweiligen Késestiicken
gelangen miissen. Die entsprechende CT ist in rechter Abbildung dargestellt. Die Wurzel
enthilt einen leeren Satz von Einschrdnkungen. Die niedrige Ebene gibt nun eine opti-
male Losung fiir jeden Agenten zuriick (Zeile 2 von Algorithmus 7), (S}, A, C, G,) fiir
a; und (Sy, By, C,Gy) fiir ay. Somit betragen die Gesamtkosten dieses Knotens 6. Alle
diese Informationen werden in diesem Knoten gespeichert. Die Wurzel wird dann in die
OPEN-Liste eingefiigt und als néchstes erweitert. Bei der Validierung der Zwei-Agenten-
Losung, die durch die beiden einzelnen Pfade (Zeile 7) gegeben ist, wird ein Konflikt
gefunden, wenn beide Agenten zum Zeitpunkt 2 zum Scheitelpunkt C' gelangen. Dies er-
zeugt den Konflikt (aq,aq, C,2). Infolgedessen wird die Wurzel als Nichtziel deklariert
und zwei untergeordnete Elemente werden generiert, um den Konflikt zu lsen (Zeile 11).
Das linke Kind fiigt die Einschrinkung (a;,C,2) hinzu, wihrend das rechte Kind die
Einschrinkung (as, C,2) hinzufiigt. Die Suche auf niedriger Ebene wird jetzt aufgerufen
(Zeile 15), um einen optimalen Pfad zu finden, der auch die neue Einschrankung erfiillt.
Fiir das linke Kind muss a; einen Zeitschritt entweder bei S; (oder bei A;) warten und
der Pfad(S;, A, Ay, C,G,) wird fiir a; zuriickgegeben. Der Pfad fiir aq, (Ss, By, C, G5)
bleibt fiir das linke Kind unveréndert. Die Gesamtkosten fiir das linke Kind betragen
jetzt 7. In dhnlicher Weise wird das rechte Kind ebenfalls mit den Kosten 7 generiert.
Beide Kinder werden zu OPEN hinzugefiigt (Zeile 17). Im letzten Schritt wird das linke
Kind fiir die Erweiterung ausgewihlt, und die zugrunde liegenden Pfade werden validiert.
Da keine Konflikte bestehen, wird das linke Kind als Zielknoten deklariert (Zeile 9) und

seine Losung als optimale Losung zuriickgegeben.

151;&1[51}
2- 52 B1,C,G2

Con: {tLE,E}}

Con {[Z,C,Z:l]

_I:{l-SLAl,Al,C,Gl ] Sol: {1 S1,A1,C,G1 }
2-52,B1,C,Gz 2- 52,81, B1,C,Gz
Cost: 7 Cost: 7

GOAL GOAL

Abbildung 4.15: CBS-Pfadplanung [11]

Es lasst sich festhalten, eine sehr flexible zur optimalen Lésung des MAPF-Problems
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darstellt, denn auf der niedrigen Ebene kénnen bei Bedarf verschiedene Single-Path-
Planungsalgorithmen (z. B. RRT und A*) verwendet werden. Auf hoher Ebene reduziert
der Einschrankungsbaum die Zeitkomplexitét fiir eine grofle Anzahl von Agenten erheb-
lich. Eine grofie Herausforderung fiir den CBS-Algorithmus bestehlt allerdings, wenn die
Umwelt kompliziert ist oder viele Konflikte zwischen Agenten auftreten. Um die Optima-
litdt zu gewdhrleisten, fiithren sowohl die hohe- als auch die niedrige Ebene des CBS
eine optimale Best-First-Suche durch. Wie bei jeder Best-First-Suche verursacht dies
zusitzliche Arbeit, da die Knoten, die moglicherweise Losungen sehr nahe liegen, ver-

lassen werden, nur weil ihre Kosten sind hoch.

Enhanced CBS (ECBS) ist eine w-suboptimale Variante von CBS, deren Suchvorginge auf
hoher und niedriger Ebene eher eine Fokussuche als Best-First-Suche sind. Eine Fokussu-
che verwendet wie A* eine OPEN-Liste, deren Knoten n in aufsteigender Reihenfolge ihrer
f-Werte f(n) = g(n)+ h(n) sortiert sind. Im Gegensatz zu A* verwendet eine Fokussuche
mit dem Suboptimalitétsfaktor w und zwei Listen, OPEN und FOCAL. OPEN ist die re-
guliare OPEN-Liste des A*-Algorithmus. FOCAL enthilt eine Teilmenge von Knoten aus
OPEN. Die Fokussuche verwendet zwei beliebige Funktionen f; und f,. f; definiert die
Knoten, die sich in FOCAL befinden. f; . ist der minimale f;-Wert in OPEN. Bei einem
Suboptimalitéitsfaktor w enthélt FOCAL alle Knoten n in OPEN, unter der Bedingung
fi(n) =w-fi_. . Mit f, wird bestimmt, welcher Knoten aus FOCAL erweitert werden soll.
Wenn f; zuléssig ist, wird garantiert, dass die zuriickgegebene Losung hochstens w X C'
ist.

Die OPEN-Liste besteht aus OPEN,, das in der niedrigen ECBS-Ebene verwendet wird,
wenn nach einem Pfad fiir Agent a; gesucht wird. Der mit f,,;,(7) bezeichnete minimale
f-Wert in OPEN, ist eine Untergrenze fiir die Kosten des optimalen konsistenten Pfades
fiir a; (fiir den aktuellen CT-Knoten). Fiir einen CT-Knoten n, LB(n) = Zle Frmin(1),
das bedeutet LB(n) < n.cost < LB(n) X w. Im ECBS-Algorithmus gibt die niedrige
Ebene fiir jeden erzeugten CT-Knoten n zwei Werte auf den hohen Pegel zuriick, ndmlich
n.Kosten und LB(n). Es sei LB = min(LB(n) | n € OPEN), wobei OPEN aus der
hohen Ebene ist. LB ist eindeutig eine Untergrenze fiir die optimale Losung des gesamten
Problems (c*). FOCAL in ECBS wird in Bezug auf LB und n.Kosten wie folgt definiert:

FOCAL = {n | n € OPEN, n.kosten < LB - w} (4.2)

Da LB eine Untergrenze fiir C™ ist, haben alle Knoten in FOCAL die Kosten, die innerhalb
des w-fachen der optimalen Losung liegen. Sobald eine Losung gefunden ist, betragen die
Kosten hochstens w - C*. Der Vorteil von ECBS gegeniiber CBS besteht darin, dass die
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4.3 BERNSTEINPOLYNOME

niedrige Ebene und die hohe Ebene mehr Flexibilitéit erhalten. Dariiber hinaus stimmen
alle giiltigen Losungen immer mit mindestens einem der CT-Knoten in OPEN {iberein.
Aufgrund der systematischen Suchen werden ECBS-Algorithmen schliellich eine Losung
finden, wenn eine solche existiert. Somit ist ECBS auch vollsténdig [54][55].

4.3 Bernsteinpolynome

Im mathematischen Bereich der numerischen Analyse sind Bernsteinpolynome Polynome
in Bernstein-Form, d. h. eine lineare Kombination von Bernstein-Basispolynomen. Die
Bernsteinpolynome haben ihren Ursprung in der Approximationstheorie. Mit ihrer Hilfe
konnte ihr Entdecker, Sergei Natanovich Bernstein, im Jahr 1911 einen konstruktiven Be-
weis fiir den Approximationssatz von Karl Weierstrafl angeben. Ende der 1950er Jahre gab
es erste Versuche, auf Bernsteinpolynomen basierende Methoden im Design von Kurven
und Fliachen einzusetzen. Paul de Faget de Casteljau bei Citroén und Pierre Bézier bei
Renault nutzten die Bernsteinpolynome bei ihrer Entwicklung von Bézierkurven und leg-
ten damit den Grundstein des heutigen Computer Aided Design (CAD). In dieser Arbeit
werden die Bernsteinpolynome verwendet, um nichtkonvexe Beschriankungen in konvexe

Beschrankungen umzuwandeln und die Trajektorien zu optimieren [56].

Fiir n € Ny heiflen die reellen Polynome B;,, : R = R, ¢ (T;)tl(l — )", 0<i<nde
Bernsteinpolynome vom Grad n. Durch affine Transformation (Abbildung des Intervalls

[0, 1] auf ein beliebiges Intervall [a,b]) erhélt man die verallgemeinerten Bernsteinpoly-

L'Ro Rt - —(7)(25 —a)'(b—1t)""". Dabei bezeichnet (n) = _
’ (b—a)\i il gl (n=4)!

den Binomialkoeffizienten [57|. Das Bernsteinpolynom ist die lineare Kombination von

[a7b
nome B;

Bernstein-Basispolynomen, und das Bernstein-Basispolynom vom Grad n ist wie folgt
definiert:

Bi(t) = (’Z) (1=t (4.3)

Das Polynom, das aus der Bernstein-Basis besteht, wird als Bézierkurve bezeichnet und
wie folgt geschrieben:

Bj(t) = cjby(t) + cjbu(t) + - + (1) = Y b, (1) (4.4)

1=0

Dabei ist I:c?, c}, e cT-L] bezeichnet als c;, die Menge der Kontrollpunkte des j-ten Stiicks
der Bézierkurve. Die Bézierkurve unterscheidet sich vom mononomischen Basispolynom
durch folgende Eigenschaften [58].
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4 ALGORITHMEN

Endpunkt-Interpolation. Die Bézierkurve beginnt immer am ersten Kontrollpunkt,
endet am letzten Kontrollpunkt und verpasst niemals andere Kontrollpunkte.
Festes Intervall. Die auf die Variable ¢ parametrisierte Bézierkurve ist auf ¢ € [0, 1].
Konvexe Hiille. Die Bézierkurve B(t) besteht aus einem Satz von Kontrollpunkten
¢;, die vollsténdig innerhalb der durch alle diese Kontrollpunkte definierten konvexen
Hiille begrenzt sind.

Hodograph-Eigenschaft. Die Ableitungskurve B(l)(t) einer Bézierkurve B(t) wird
als Hodograph bezeichnet und ist immer noch eine Bézierkurve mit den definierten

Kontrollpunkten c(l)(z’) =n - (¢41 — ¢;), wobei n der Grad ist.

Tatséichlich konnen fiir eine Bézierkurve die Kontrollpunkte als Gewichte der Basis und
auch die Basis als Gewichte der Kontrollpunkte angesehen werden. Da die Bézierkurve in
einem festen Intervall [0, 1] definiert ist, ist es erforderlich, dass ein Skalierungsfaktor s
fiir jedes Stiick der Trajektorie eingefiigt wird, um die Parameterzeit ¢ auf eine willkiirlich
zugewiesene Zeit fiir dieses Segment zu skalieren. Dementsprechend kann die stiickweise

Bernstein-Basis des m-Segments in einer Dimension p aus x, y, z wie folgt geschrieben

werden.
(6 Ty dabi((510), 1[5, 1]
Fu(t) = .32 Y iz 02252(%)7 te[Th,15] (4.5)
sm S et (C5 ), e [T T

Dabei ist c¢j; der i-te Kontrollpunkt des j-ten Segments der Trajektorie. Ti,T5, -, T,
sind die Endzeiten jedes Segments. Die Gesamtzeit betragt T' = T,, — T,. S1, 82, ***, S,
sind die Skalierungsfaktoren, die auf jedes Stiick der Bézierkurve angewendet werden, um
das Zeitintervall von [0, 1] zur Zeit [T;_;, T;] in einem Segment zugeordnet. In der Praxis
wird durch Multiplizieren eines Skalierungsfaktors in der Position jedes Kurvenstiicks eine

bessere numerische Stabilitét fiir das Optimierungsprogramm erzielt [59][60].
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In diesem Kapitel werden zwei Methoden zur Losung des MAPF-Problems vorgestellt,
nédmlich eine statische Methode in drei Dimensionen und eine dynamische Methode in
vier Dimensionen. Im Rahmen dieser Arbeit wird die Pfadplanung basierend auf den
Dimensionen des kartesischen Koordinatensystems als statische Methode in drei Dimen-
sionen definiert, und die Pfadplanung basierend auf den drei rdumlichen Dimensionen
und der zeitlichen Dimension wird als dynamische Methode in vier Dimensionen defi-
niert. Fiir die statische Methode steht die Kollisionsfreiheit durch iiberschneidungsfreie
Trajektorien im Zentrum. Die Pfade der Agenten diirfen sich nicht iiberschneiden, d. h.
es ist keine Uberlappung von Pfaden erlaubt. Mit der dynamischen Methode kann dieses
Problem durch zeitliche Anpassung gelost werden. Neben der Ebene der Pfadplanung der
statischen Methode wird eine Ebene der autonomen Entscheidungsfindung jedes Agen-
ten hinzugefiigt. So kénnen zwei Agenten A und B im Fall einer Pfadiiberschneidung z.
B. entscheiden, dass A wartet bis B diesen Punkt durchquert hat. Im Folgenden wird
zunichst das mathematische Modell definiert, um das MAPF-Problem zu beschreiben.

Danach wird der Implementierungsprozess beider Methoden im Detail vorgestellt.

5.1 Mathematische Modelldefinition

Wie in Kapitel 1 erklart, wird ein Multi-Agent-System aus N Quadrotoren betrachtet. Es
wird angenommen, dass die Quadrotor/Agenten die gleiche dynamische Grenze und ver-
schiedene Groflen mit dem Radius rq, «++, 7y haben. Als Voraussetzung sind Vorkenntnisse
des freien Raums F' und des Hindernisses O in der 3D-Belegungskarte angegeben. Start-
punkt und Zielpunkt des i-ten Quadrotors werden als s;, g; zugewiesen. Es wurde gezeigt,
dass die Quadrotordynamik unterschiedlich flach ist und die Trajektorie in stiickweisen
Polynomen mit flachen Ausgaben in der Zeit t dargestellt werden kann [61]. Somit kann
die Trajektorie des i-ten Quadrotors p;(¢) in stiickweisen M-Segment-Polynomen darge-
stellt werden. Durch die zwei Methoden wird fiir jeden Agenten eine kontinuierliche, glatte
Trajektorie p;(t) erzeugt, die Kollisionen mit Hindernissen und anderen Agenten verhin-
dert. Die maximale Geschwindigkeit und Beschleunigung des i-ten Quadrotors sind vfmx

i
bzw. 00
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5 METHODEN

5.1.1 Darstellung der Trajektorie

Aufgrund der unterschiedlichen Ebenheit der Quadrotordynamik ist bekannt, dass die
Flugtrajektorie des Quadrotors in einer Polynomfunktion mit flachen Ausgéngen in der
Zeit t dargestellt werden kann [61]. Es ist jedoch schwierig, die Beschrankungen der Kolli-
sionsvermeidung auf Standardpolynombasis zu handhaben. Aus diesem Grund werden die
Trajektorien von Quadrotoren im Rahmen dieser Arbeit mit Bernsteinpolynome umge-
setzt. Das Bernsteinpolynom ist die lineare Kombination von Bernstein-Basispolynomen,

und das Bernstein-Basispolynom vom Grad n ist wie folgt definiert:

Byn(t) = (Z)tk(l — )"t (5.1)

wobei t € [0,1] und k = 0,1, -+, n. Die Trajektorie des i-ten Quadrotors p;(¢) € Rg kann

als stiickweise Bernsteinpolynom im M-Segment wie folgt dargestellt werden:

Yo Ci,kBk,n(Tl) t € [T, T1]

Y ieo Cé,kBk,n(TZ) t e [Ty, 1]

p(t) = : (5.2)

~ZZ=0 Céw,kBk,n(TM) t € [Th-1,Tw]

t_Tm—l
Tm_Tm,—l !
des i-ten Quadrotors ist, und 7,,,_1,7;, sind die Start- und Endzeit des m-ten Segments.

wobei 7, = Cin,k ist der k-te Kontrollpunkt des m-ten Segments der Trajektorie
Somit besteht der Vektor des Optimierungsproblems, ¢, aus allen Kontrollpunkten von
p;(t) fiir ¢ = 1,---, N. Wie in Kapitel 4 geschrieben, ist ein Tupel (a;,v,t) zur Beschrei-
bung der Einschriankung definiert. Dabei bezeichnet a; die einzelnen Agenten und v die
Koordinaten der Position. D. h. zu jeden Position v gibt es drei Achsen x,y, z fiir die

raumliche Darstellung. Das Zeichen t steht fiir den aktuellen Zeitpunkt.
5.1.2 Einschrinkungen der Dynamik
Die Zielfunktion der Dynamik des Quadrotors wird wie folgt definiert (5.3), um das Inte-

gral der ¢-ten Ableitung der Trajektorie zu minimieren:

2

dt = ¢ Qc (5.3)

2

N

,JTIL
J = E J
i=1 2 1o

d’
@p (1)
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5.1 MATHEMATISCHE MODELLDEFINITION

Dabei ist () die hessische Matrix der Zielfunktion. In dieser Arbeit wird ¢ = 3 gesetzt,
um den Ruck der Trajektorie zu minimieren, so dass die Eingabe nicht aggressiv fiir den
Quadrotor ist [62].

Die Trajektorie muss die Start- und Zielpunkte verbinden und soll bis zur ¢ — 1-ten
Ableitung kontinuierlich sein. Auflerdem diirfen die Geschwindigkeit und Beschleuni-
gung des Quadrotors die maximale Geschwindigkeit vfnax und Beschleunigung ai,wx nicht
iiberschreiten. Diese Einschriankungen kénnen als affine Gleichheits- bzw. Ungleichheits-

beschrinkungen geschrieben werden:

AeyC = by (5.4)
Adync < bdyn (55)

5.1.3 Einschrankungen zur Vermeidung von Hindernissen

Zur Vermeidung von statischen Hindernissen wird das Hinderniskollisionsmodell des i-ten
Quadrotors definiert (5.6). Das Hinderniskollisionsmodell bestimmt einen Kollisionsbe-
reich zwischen einem Quadrotor und statischen Hindernissen, um einen sicheren Abstand

zu gewdahrleisten.

Cops = {p € Ry [ Ipll5 = (2)} (5.6)

Der i-te Quadrotor muss die nachstehende Bedingung erfiillen, um nicht mit den Hinder-

nissen zu kollidieren:

pz(t) & Cébs C F7 (S [T07TM:| (57>
Dabei ist @ die Minkowski-Summe. Die graphische Darstellung dazu ist das linke Dia-
gramm in Abbildung 6.1.
5.1.4 Einschrinkungen zur Vermeidung von Interkollisionen

Ein Kollisionsbereich zwischen dem i-ten und j-ten Agenten kann mit einem Interkollisi-

onsmodell C}7,..

ausgedriickt werden (5.8).
irj N
Cinter = {p ERy | p Eps (' +77) } (5.8)

Dabei ist FE die diagonale Matrix dia([l, 1, 1/(cdw)2]), und c¢g, ein Koeffizient zur Be-
schreibung des Abwind-Effekts/Downwash-Effekts (siehe Abbildung 6.2) [63]. Der i-te
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Abbildung 5.1: Hindernis-Kollisionsmodell und Inter-Kollisionsmodell

Agent kollidiert nicht mit dem j-ten Agenten, wenn die relative Trajektorie des j-ten
Agenten in Bezug auf den i-ten Agenten, p"’(t) = p’(t) — p'(¢), die folgende Bedingung
erfiillt(5.9). Abbildung 6.1 (rechts) ist eine graphische Darstellung des Interkollisionsmo-

dells.

5.2

Abbildung 5.2: Abwind-Effekt/Downwash-Effekt

Statische Methode (ohne Zeitdimension)

(5.9)

Z(t) N Cii;j;ter = Q? te [T07TM:|
1Tl l T4
Air flow
Jn;r _ > T""&;x ';. R + L+ o
NS an N 7. Dowywasly flow

Beim MAPF-Problem geht es darum, Kollisionen mit anderen Agenten sowie mit stati-

schen Hindernissen zu vermeiden. Beim SAPF-Problem werden nur der einzelne Agent

und statische Hindernisse betrachtet. Unter Verwendung des Pfadplanung-Algorithmus
ist das SAPF-Problem viel einfacher als das MAPF-Problem zu 16sen. Beim SAPF gibt
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es keinen Einfluss dynamischer Hindernisse oder anderer Agenten, d. h. die Position der
Hindernisse verdndert sich im Zeitverlauf nicht. Die Losungsanséitze des SAPF-Problems
konzentrieren sich auf die Methoden fiir nur die drei rdumlichen Dimensionen, um Kolli-

sionen mit statischen Hindernissen zu vermeiden.

Im Gegensatz dazu miissen die MAPF-Losungsanséitze dynamische Hindernisse
berticksichtigen. Aus der Perspektive eines einzelnen Agenten sind die sich bewegenden
anderen Agenten dynamische Hindernisse. Deswegen muss beim MAPF-Problem die Zeit-
dimension hinzugefiigt werden, um dynamische Hindernisse zu vermeiden. Es ist bekannt,
dass jede zusétzliche Dimension die Zeitkomplexitéit des Algorithmus exponentiell erhoht.
Es gibt zwei Optimierungsmoglichkeiten bei der Losung des MAPF-Problems, ndmlich
entweder die Anzahl der Dimensionen zu reduzieren oder die Algorithmuseffizienz zu
erhohen. Die statische Methode wird zur Verminderung der Zahl der Dimensionen verwen-
det. Statt der Echtzeittrajektorien werden die Pfade aller anderen Agenten als statische
Hindernisse in der Karte gespeichert. Bei der Pfadplanung eins einzelnen Agenten werden
dann nur statische Hindernisse, und dazu zdhlen Hindernisse in der Umwelt ebenso wie
die Pfade der anderen Agenten. Somit wird das MAPF-Problem in ein SAPF-Problem
umgesetzt. Als Néchstes wird diese statische Methode im Detail betrachtet, beginnend mit
ihrer Architektur. Danach werden die vier Module der Methode vorgestellt, namlich Kar-

tenkonstruktion, FCL Kollisionserkennung, Pfadplanung und Trajektoriengenerierung.

5.2.1 Architektur statischer Methode

Abbildung 6.16 stellt die Architektur der statischen Methode dar. Die rechteckigen Blocke
reprasentieren die verschiedenen Module, und die Pfeile geben die Richtung des Informa-
tionsflusses an. Input und Output sind in den ovalen Feldern beschrieben. Zuerst wird
die Umgebung in OctoMap modelliert, um eine 3D-Belegungsgitter-Map zu erhalten. Die
Map-Information wird durch ROS-Knoten zum FCL-Modul gesendet. Zur Vereinfachung
der Kollisionserkennung werden Hindernisse als Kuben, die Drohne als Kugel, und der
Pfad als Zylinder modelliert. Dann wird der Pfad jeder Drohne durch den informierten
RRT*-Algorithmus sequenziell geplant. Wird ein giiltiger Pfad errechnet, so wird dieser
als FCL-Kollisionsmodell gespeichert. Das Pfadplanungmodul generiert diskrete Pfade,
wie die gestrichelte Linie gezeigt. Dabei sind 51, s° die Startpunkte und gl, g2 die Ziel-
punkte fiir Agenten 1 und 2. Im letzten Modul werden die Pfade unter Beriicksichtigung
der Kinematik optimiert. Schliellich wird eine ausfiihrbare Trajektorie fiir jede Drohne

generiert, angezeigt durch die durchgezogene Linie.
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Abbildung 5.3: Architektur statischer Methode

5.2.2 Kartenkonstruktion

Als Voraussetzung fiir die Pfadplanung wird das Kartenkonstruktionsmodul verwendet,
um die Daten einer bekannten Umgebung zu modellieren und zu speichern. Im Rahmen
dieser Arbeit geht es primir um die Pfadplanung fiir Produktions- und Transportin-
frastruktur. Haufige Anwendungsbereiche sind Lagerhduser und Werkstétten oder Indu-
strieparks. Fiir diese Arbeit werden ein Lagerhaus und ein Industriepark durch OctoMap
modelliert. Wie das Kapitel 3.4 beschrieben, basiert OctoMap auf Octree und einer pro-
babilistischen Belegungsschéitzung. Es reprasentiert explizit nicht nur belegten Raum,
sondern auch freie und unbekannte Bereiche. Die Wahrscheinlichkeit P(n) beschreibt die
Belegungsschitzung des Knotens n. Wenn der Knoten frei ist, gilt P(n) = 0. Wenn der
Knoten belegt ist, gilt P(n) = 1. Je grofler die Wahrscheinlichkeit ist, desto hoher ist die
Wahrscheinlichkeit dafiir, dass dieser Knoten belegt ist. Ist P(n) = 0,5, so ist der Knoten
unbekannt. Um das Kartenmodell weiter zu vereinfachen, gibt es im Rahmen dieser Un-
tersuchung jedoch keine unbekannten Bereiche, so dass jeder Knoten nur zwei Zusténde
haben kann, namlich frei oder belegt. P(n) kann nur die Werte 0 und 1 annehmen. Die
Wahrscheinlichkeiten éndern sich nicht mit der Zeit. Wenn der Pfadplanungsalgorithmus
jeden Knoten in der Karte durchlauft, muss er nur eine Logik ausfithren, um zu bestim-
men, ob jeder Knoten belegt ist, es gibt keine Unsicherheit und die Berechnungskomple-

xitdt wird verringert. Algorithmus 9 verdeutlicht den Prozess der Kartenkonstruktion.
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Der gesamte Raum 6 besteht aus belegtem Raum £ und freiem Raum p.
0=CUp, (Np=@ (5.10)

Zuerst wird das Octree mit einer vorgegebenen Auflosung initialisiert (Zeile 1). Dann
werden alle belegte und freie Knoten im Octree registriert und aktualisiert (Zeilen 2-
7). SchlieBlich wird eine 3D-Belegungskarte ¢ ausgegeben, und die Karte wird in eine
Datei mit .bt als Suffix geschrieben. Die .bt-Datei kann durch den OctoMap-Server mit
dem ROS-Framework verbunden sein. Die 3D-Belegungskarte wird iiber die ROS-Knoten
in Form einer ROS-Nachricht an den Planer gesendet. Die Abbildung zeigt OctoMap-

Visualisierung mit Rviz.

Algorithm 8: Kartenkonstruktion

Input: belegter Raum & = {&;, -+, £}, freier Raum o = {04, -*-, 0a}, gesamter
Raum 6
Output: 3D-Belegungskarte ¢
1 tree « Octree(resolution) ;
2 for i < 1 to N do
3 ‘ tree.updateNode(&;, true) ;
4 end
5 for i < 1 to M do
6 ‘ tree.updateNode(p;, false) ;
7 end

8 tree.writeBinary(e ) ;

5.2.3 FCL-Kollisionserkennung

Das FCL-Kollisionsmodell behandelt die Darstellung von Objekten in einer hierarchischen
Datenstruktur, damit Kollisions- und Naherungsabfragen effizient ausgefiihrt werden
konnen. In statischen Methoden werden drei FCL-Kollisionsmodelle dargestellt, ndmlich
das Hindernismodell, das Drohnenmodell und das Pfadmodell. In der Kartenkonstruktion
wird die Umgebung in einer 3D-Belegungskarte modelliert, und die statischen Hinder-
nisse werden im Octree gespeichert. Zur Vereinfachung der Kollisionserkennung werden
die besetzten Riume, P(n) = 1, zwischen Pfad und Umgebung als Hindernismodelle
beschrieben. Das Octree in OctoMap wird zu einem FCL-Octree konvertiert. Die Droh-
ne wird im FCL als Kugel mit dem Radius R modelliert, dabei steht R fiir die Summe
aus dem Radius der tatséchlichen Geometrie R; der Drohne und dem Sicherheitsabstand

R,. Der Sicherheitsabstand ist abhéngig vom Aerodynamikfaktor und dem Antrieb der
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Drohne, z.B. Windkraft oder Motor. Der Pfad wird als Zylinder mit demselben Radius R

modelliert, der auf dem Pfad zentriert ist.

b .’

a) Drohne-Modell. b) Pfad-Modell

Abbildung 5.4: Kollisionsmodell

Die Kollisionserkennung ist im Flussdiagramm in Abbildung 6.17 dargestellt. Das Kollisi-
onsmodell ist die Geometrie des Kollisionsobjekts, und der Zustand des Modells beschreibt
die Kinematik des Kollisionsobjekts. Wenn zwei Kollisionsobjekte mit Kollisionsmodellen
und Zustéinden initialisiert sind, berechnet der FCL Manager die Uberlappung der Objek-
te mit dem Hiillkorperalgorithmus, um festzustellen, ob eine Kollision vorliegt. Schliefllich
wird ein Kollisionsergebnis zuriickgegeben. Durch logische Beurteilung kann der Algorith-
mus entscheiden, ob der aktuelle Pfad kollidiert, um zu bestimmen, ob der aktuelle Pfad

erweitert oder ein neuer Pfad neu generiert werden soll.

Kollisionsmodelle /> Zwei Kollisionsobjekte \

|

Zustande der .| Aktualisieren der Transformationen der Kollisionsobjekte und
Modelle g Biundeln dieser in einem Kollisionsobjekt

Y

| CollisionCallback() }—
FCL Manager

v
ColhsmnRequest o

COII|5|onResuIt Kollisionsergebnisse

Interne Funktion -
vmle Variable oder Variable Ergebniss ‘ Input ‘/

Abbildung 5.5: Architektur der FCL

h
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5.2.4 Pfadplanung

Bei der SAPF-Pfadplanung geht um die Vermeidung statischer Hindernisse durch einen
einzelnen Agenten. Der informierte RRT*-Algorithmus wird verwendet, um einen kolli-
sionsfreien Pfad in einer vorgegebenen Umgebung zu generieren. Im Unterschied dazu
beschéftigt sich die MAPF mit der Vermeidung von Kollisionen zwischen mehreren Agen-
ten. Die zur SAPF-Problemlosung generierten Pfade werden als Pfadkollisionsmodell im
Octree gespeichert, damit in der sequenziellen MAPF die Pfade anderer Agenten vermie-

den werden konnen.

Algorithmus 9 dient der Pfadplanung in der statischen Methode fiir Agenten ¢ im Rahmen
dieser Arbeit. Als Input sind der Startpunkt si, der Zielpunkt gi, die 3D-Belegungskarte
¢ und die maximale Planungszeit T,,,, vorgegeben. Als Output generiert der Algorith-
mus eine Reihe von Wegpunkten w, e, wfl fiir Agenten ¢, die Startpunkt und Zielpunkt
diskret verbinden, so dass gilt: wi = &' und wfl = gi. Auflerdem bilden die Wegpunk-
te einen kollisionsfreien Pfad. Das bedeutet, dass keine benachbarten Punkte, die durch
eine gerade Linie verbunden sind, mit Hindernissen kollidieren. Zuerst werden die FCL-
Kollisionsmodelle initialisiert(Zeile 1). Dann wird der informierte RRT* verwendet, um
einen Pfad von s’ nach ¢’ zu finden. Die Funktion FCL.collide() beurteilt, ob der Pfad
mit die Hindernissen kollidiert (Zeile 4). Ist der Pfad kollisionsfrei, wird er in PathOctree
gespeichert. Am Ende gibt der Algorithmus die Wegpunkte w’ und das Octree 7° zuriick.

Algorithm 9: SAPF statischer Methode
Input: Startpunkt s', Zielpunkt ¢* fiir Agenten i € {1, ---, N}, 3D-Belegungskarte

€, maximale Planungszeit T},
Output: Wegpunkte w' = {wi, '-',wi} fiir Agenten 1, T
MapOctree ¢ « ¢, PathOctree 7" « @, FCL.Drohne « FCL.Sphere(R),
runningTime ¢ ;
fort<T,,, do
3 w' —InformedRRT*(s", ¢');
4 | if IFCL.collide(w', ¢) then

=

N

5 e w';
6 break;

7 end

s end

i
9 return 7, w;

Algorithmus 10 beschreibt die Darstellung der Pfadplanung fiir mehrere Agenten. Es

gibt insgesamt ¢ Agenten, und fiir jeden Agenten gibt es einen Startpunkt s" und einen
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Zielpunkt gi. Die sequenzielle Pfadplanung geschieht folgendermaflen: Fiir den ersten
Agenten gibt es bei der Planung keinen anderen Pfad (Zeile 5). Fiir nachfolgende Agen-
ten muss der zuvor geplante Pfad beriicksichtigt werden (Zeilen 7-11). Daher ist eine
Kollisionspriifung zwischen dem Pfad des i-ten Agenten mit den vorherigen ¢ — 1 Pfa-
den durchzufiihren. Tritt eine Kollision auf, muss der Pfad des i-ten Agenten neu ge-
plant werden (Zeile 10). Wenn die Pfadplanung fiir alle ¢ Agenten fertig ist, gibt der
Algorithmus die Wegpunkte W = {wl, -o-,wN} zuriick. Da jeder Pfad die Kollisions-
priifung fiir alle anderen Pfade durchfiihrt, gibt es keine Pfadkollisionen. Schliefllich wer-
den die iiberschneidungsfreien Pfade generiert, die aus diskreten Wegpunkten bestehen.
Algorithm 10: MAPF statischer Methode
Input: Startpunkt si, Zielpunkt gi fiir Agenten 7 € {1, ---, N}, 3D-Belegungskarte

€, maximale Planungszeit ¢,,,.
Output: Wegpunkte W = {wl, -o-,wN}
1 runningTime ¢;

2 fort<t,,, do

3 for s <1 to N do

4 if 7 =1 then

5 SAPF(si, gi);

6 else

7 SAPF(s', ¢"):;

8 for j « (i—1) to1do
9 while FCL.collide(w',7") do
10 SAPF(si, gi);

11 j e (i=1);

12 end

13 end

14 end

15 end
16 end
17 return W = {wl, m,wN};

5.2.5 Trajektoriengenerierung

Nach der Pfadplanung werden aus diskreten Wegpunkten iiberschneidungsfreie Pfade ge-
neriert. Das bedeutet, dass die Pfade nicht kontinuierlich sind und der Abstand zwischen
Zustéinden im Pfad sehr grofl sein kann. Auflerdem beriicksichtigen die Pfade keine dy-

namischen oder kinematischen Einschrinkungen. Dies bedeutet, dass es zwischen den
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Wegpunkten scharfe Kurven geben kann, wie Abbildung 6.20 zeigt. Deshalb ist es not-
wendig, dass die Pfade durch Interpolation und Glattung optimiert werden. Hier soll dazu
die B-Spline-Funktion verwendet werden, die fiir den vorliegenden Fall vorteilhafte Eigen-
schaften besitzt, ndmlich die lokale Steuerung und die konvexe Hiilleneigenschaft, um eine

ausfithrbare Trajektorie zu generieren [64] [65] [66].

Bei n + 1 Kontrollpunkten pg, py, *++, p,, und Knotenvektoren ty,t;, +++,t,, ist die B-Spline-
Kurve s(t) vom Grad k wie folgt definiert:

s(t) = ) pia(®) (5.11)

wobei N, ;(t) die B-Spline-Mischfunktion des Grades k ist, die rekursiv wie folgt ausge-

wertet werden kann:

1 wennt; <t<t
Ni70(t) = (512)
0 sonst

t—t, "
Nip(t) = —— N (1) + %Nﬂl,k—l(t) (5.13)
tz+k tz tz+k+1 tz+1

Die Gesamtzahl der Knoten sollte m + 1 = n + k + 2 erfiillen. Der einheitliche B-Spline

ist eine spezielle Art von B-Spline, dessen Knoten gleichméfBig verteilt sind. Angenom-

men, der Knotenvektor wird mit der Aquidistanz At getrennt. Das halboffene Intervall
t=t;
At
normalisiert und fiir die i-te Knotenspanne sind nur k£ + 1 Mischfunktionen ungleich Null,

[t;,t;41) wird als i-te Knotenspanne bezeichnet. Jede Knotenspanne wird mit u =

entsprechend £+ 1 Kontrollpunkten p;_y, «++, pi. Die k+1 Kontrollpunkte werden als Koor-
dinatenmatrix einer Kontrollpunktspanne gestapelt P;_;, := [pi_kpi_kﬂmpi]T e RFFX3
Sei 7 =1 — k, konnen die Position und die Ableitungen der B-Spline-Kurve, die der j-ten

Kontrollpunktspanne entsprechen, wie folgt bewertet werden:

dsj(u)_ 1 dpt
) (and

(5.14)

Dabei bezeichnet [ die Ordnung der Ableitung (I = 0 ist die Position), b = [1 uugmuk]T €
R**' den Basisvektor, und M, = (m;; € R(k+1)x(k+1)) die Mischmatrix, wobei m; ; =
%(ki) Z];:j(—l)s_j(lzfjl,)(k — s)*7". GemiB 5.14 kann die Bewertung der Ableitungen der
B-Spline-Kurve durch eine lineare Matrixmultiplikation in Bezug auf die Kontrollpunkt-
spanne P; ausgedriickt werden. Im Rahmen dieser Methode wird ein quintischer einheit-

licher B-Spline (k = 5) verwendet, um die Kontinuitét sicherzustellen [67] [68] [69] [70].
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Die Diagramme in Abbildungen 5.6 zeigen den Optimierungsprozess durch B-spline. Zu-
erst werden die diskreten Wegpunkte als B-Spline-Kontrollpunkte bezeichnet. Entspre-
chend der Parametereinstellung werden einige Punkte zwischen jeweils zwei benachbarten
Wegpunkten interpoliert, um eine glatte Trajektorie zu formulieren (Abbildung 5.6 b)).
Dann wird die Steigung jedes Punktes auf der Kurve berechnet, um die kinodynamische
Machbarkeit der Trajektorie sicherzustellen. Aus den Diagrammen ist ersichtlich, dass
die endgiiltige Trajektorie durch die Kontrollpunkte verlauft. Die hinzugefiigten Punkte
bergen jedoch ein potenzielles Kollisionsrisiko. Genau genommen sollte fiir jeden interpo-
lierten Punkt eine Kollisionserkennung durchgefiithrt werden. Um die Interpolation zu ver-
einfachen und die Effizienz zu verbessern, wird der Kollisionssicherheitsabstand so einge-
stellt, dass keine fiir die Interpolation ausgewéhlten Punkte diesen Abstand {iberschreiten.

Schlieflich wird eine kollisionsfreie, kinodynamische und glatte Trajektorie generiert.

—

——
Zimn

a) Diskrete Wegpunkte nach Pfadpla- b) Optimierung durch B-Spline c) Steigung der Kurve

nung

Abbildung 5.6: Trajektorie Optimierung durch B-Spline

5.3 Dynamische Methode (mit Zeitdimension)

Das Hauptaugenmerk der statischen Methode ist darauf gerichtet, durch die MAPF-
Planung jede Uberschneidung von Pfaden auszuschlieBen. Im Gegensatz dazu ist eine
Pfadiiberschneidung mit der dynamischen Methode moglich, da hier neben den drei
rdumlichen Dimensionen die zeitliche Dimension zur Verfiigung steht, um Kollisionen
zu vermeiden. In diesem 4D-Scenario geht es darum, jede Positionsiiberlappung zwischen
Agenten zu einem bestimmten Zeitpunkt zu verhindern. Wie bereits erwéhnt, stellt die
zusédtzliche Dimension extrem hohe Anforderungen an die Recheneffizienz des Algorith-
mus. In dynamischen 4D-Methode werden der sichere Flugkorridor (SFC), der relativ
sichere Flugkorridor (RSFC) zur Kollisionsvermeidung und die Dummy-Agenten zur Ef-

fizienzoptimierung verwendet. Im Folgenden wird die dynamische Methode im Detail be-
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trachtet, beginnend mit ihrer Architektur. Dann werden die Kernmodule der Methode vor-
gestellt, ndmlich die initiale Planung, der sichere Flugkorridor (SFC), der relativ sichere
Flugkorridor (RSFC), Dummy-Agenten und die Zeitzuweisung. Die sogenannten Modu-
le wie Kartenkonstruktion, Trajektoriengenerierung und Trajektorienverfolgung gleichen

denen der statischen Methode und werden hier nicht erneut betrachtet.

5.3.1 Architektur der dynamischen Methode

Die Architektur der dynamischen Methode ist in Abbildung 6.15 dargestellt. Die blau-
en Blocke repréasentieren die Module, und die orangen Blocke sind die Algorithmen oder
Ergebnisse der Module. Die Pfeile geben die Richtung des Informationsflusses an. Zu-
erst wird aus dem Kartenkonstruktionsmodul die OctoMap erstellt, um die Umgebung zu
modellieren. Anhand der OctoMap generiert der MAPF-Algorithmus ECBS eine initia-
le Trajektorie fiir jeden Agenten. Basierend auf dieser initialen Trajektorie werden zwei
weitere Flugkorridore generiert, ndmlich der sichere Flugkorridor und der relativ sichere
Flugkorridor, um Kollisionen zwischen Hindernissen und Agenten zu vermeiden. Nach
der Kombination beider Korridore wird ein absolut kollisionsfreier Korridor hergestellt.
Anschlieend werden virtuelle Agenten im Dummy-Agenten-Modul eingefithrt, um die
Komplexitidt der Optimierung zu verringern. Danach werden die Zeitsegmente fiir die
Trajektorie im Zeitzuweisungsmodul verteilt. Am Ende entstehen realisierbare Trajekto-

rien mit zeitlicher Anpassung.

‘ Kartenkonstruktion ‘ SEC

A J

Octomap SFG

l Korridor

‘ Initiale Planung

Initiale
ECBS Trajekiore » RSFC

RSFC )
Korridor

—

Dummy-Agenten

Zeitzuweisun
Trajektorie -

Optimierung l

A

Trajektorie mit
Zeitanpassung

Abbildung 5.7: Architektur dynamischer Methode

5.3.2 Initiale Planung

Den Planungsprozess fiir einen einzelnen Quadrotor haben viele Forscher in die initiale
Trajektorienplanung und die Verbesserung der Trajektorie unterteilt, und diese zweistufige

Methode soll hier auf mehrere Agenten angewendet werden [22][71]. In Anlehnung daran
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wird die initiale Trajektorie der dynamischen Methode zuna chst mithilfe eines graph-
basierten MAPF-Algorithmus geplant. Die initiale Flugbahn des i-ten Quadrotors pjmt
wird als Reihe von Wegpunkten definiert, die Start- und Zielposition in einem Diagramm
verbinden. In der MAPF ist die Kostenfunktion die Summe der Lénge aller Flugbahnen.
Es gibt viele MAPF-Algorithmen, wie HCA* [72], M* [73], CBS [11]. Unter diesen wird
der Enhanced CBS (ECBS) [54] als diskreter Planalgorithmus fiir die initiale Flugbahn
gewahlt, da er in kurzer Zeit eine suboptimale Losung unter der Grenze der Losungskosten
finden kann. Mit anderen Worten, wird es garantiert, dass die Kosten der Trajektorie
niedriger als das ¢,,-fache der optimalen Kosten sind, wobei ¢, ein benutzerdefinierter Be-
grenzungsfaktor ist[54]. Um das graphbasierte ECBS zu verwenden, iibersetzt der diskrete
Planer die 3D-Belegungskarte OctoMap in eine 3D-Gitterkarte. Nach der Ubersetzung be-
rechnet ECBS eine diskrete Trajektorie, die Start- und Zielpunkte verbindet. Wenn die
Start- und Zielpunkte sich nicht auf der 3D-Gitterkarte befinden, werden die néchsten

Gitterpunkte statt der urspriinglichen Punkte verwendet.

Eine initiale Trajektorie des i-ten Quadrotors, pzm-t =7 = {Wé, e 7T§\/[}, ist definiert als

Pfad, der die folgenden Bedingungen (5.15) fiir alle m = 0,---, M und i # j erfiillt:

m=s, my=4g (5.15)
(Toer. i) @ Cop C F (5.16)
(77:;5_17 Tr?z;w]) n CZ;L].ter =0 (517)

Wobei (Wﬁn_l,ﬂj\4> = {cwrfn_l +(l-a)r, |0<as 1} ein Liniensegment zwischen den
Wegpunkten 7., und 7., ist, und 7./ = 7/ — 7', (11) zeigt, dass die initiale Flugbahn
frei von Hindernissen ist, und (12) bedeutet, dass die Agenten nicht mit anderen Agenten

kollidieren, wenn sich alle Agenten mit konstanter Geschwindigkeit entlang ihrer initialen
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Trajektorien bewegen.

Algorithm 11: Trajektorienplanung

Input: Startpunkt s', Zielpunkt ¢’ fiir Agenten i € {1, ---, N}, 3D-Belegungskarte
€

Output: Gesamtflugzeit T', Trajektorie p'(¢) fiir Agenten i € {1, -, N},
t€[0,T]

m=(x',,7") « plannitialTraj((s"", ¢""), ) ;

2 for i < 1 to N do

s | SFC'=(SFCy, -, SFCh;) « buildSFC(r', €):;

4 for j <7+ 1 to N do

jun

5 | | RSFC" =(RSFCy’, - RSFC}]) « buildRSFCr', 7
6 end
7 end

P°(#), -, p" () « trajOpt(r, SECY', RSFCY "
T,p"(t), -+, p" (t) « timeScale(p”(t), -+, p" (1));
10 return T, p°(t), -, p" (¢);

0]

©

5.3.3 Der sichere Flugkorridor (SFC)

Der sichere Flugkorridor (SFC) wird bei der Pfadplanung benutzt, um den freien Raum
in einer Karte zu modellieren [74]. Der SFC besteht aus verbunden konvexen Mengen und
kann als lineare Ungleichungen zur Vermeidung von Hindernissen bei der quadratischen
Programmierung (QP) dargestellt werden [75] [74] [59] [76]. Der SFC des i-ten Quadrotors,
SF Ci, o SF CJZQ, ist als Sammlung konvexer Mengen definiert, die nicht mit Hindernissen

kollidieren und sequengziell verbunden sind.

SFC, & Cl, € F, m=1,-- M (5.18)
SFC! nSFC! . +@, m=1,--M-1 (5.19)

C’ébs ist das Hinderniskollisionsmodell fiir den i-ten Quadrotor, das als Kugel mit dem
Radius r* definiert ist, der den Sicherheitsabstand zwischen einem Hindernis und einem
Quadrotor darstellt. Die Trajektorie des i-ten Quadrotors ist frei von Hindernissen, wenn
fiir beliebiges ¢ € [0,7] existiert m € {1,---, M}, so dass p'(t) € SFC.,, wobei T die
Gesamtflugzeit ist. Zuerst wird der SFC nach der Achsensuchmethode mit einer vordefi-
nierten Grofie an jedem Wegpunkt der initialen Trajektorie konstruiert. Mit Ausnahme
der Start- und Zielpunkte erweitern die Wegpunkte sich in der vorherigen Wegpunkt-

richtung, um zwei konvexe Mengen zu verbinden. Alle Wegpunkte aufler Start- und Ziel-
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punkten werden auf der 3D-Gitterkarte ausgerichtet, so dass die Bedingung 5.14 erfiillt
ist. Danach erweitert sich jeder Korridor in alle anderen Achsenrichtungen, bis er einen

maximalen freien Raum hat. Schliellich werden die duplizierten Korridore geléscht.

Algorithm 12: Erstellung des SFC (buildSFC)
Input: initiale Trajektorie 7ri, 3D-Belegungskarte ¢
Output: SFC SFC" = (SFC,, -, SFC};)

1 D e« {%x,ty, £z},

2 for m < 1 to M do

3 SFC’in «— (77';1_1,71':'71%
4 while D s not empty do
5 for ;4 in D do
6 if SFC’fn cannot expand to direction i then
7 | DeD\p;
8 end
9 end
10 expand SF C’fn to all directions in D;
11 end
12 end

Algorithmus 12 zeigt die Erstellung des SFC. Der SFC wird auf <7rfn_1,7rfn> initialisiert,
um die Bedingung() zu erfiillen (Zeile 3). Fiir alle Richtungen wird gepriift, ob der SFC
erweiterbar ist (Zeilen 5-9), und eine Lénge der Erweiterung ist vorgegeben (Zeile 10).

Dieser Algorithmus gibt konvexe Mengen zuriick, die der Definition von SFC entsprechen.

5.3.4 Der relativ sichere Flugkorridor(RSFC)

Im Vergleich zum SFC wird der relativ sichere Flugkorridor(RSFC) vorgestellt, um einen
freien Raum fiir Ausweichmandéver zwischen zwei Agenten zu modellieren. Unter Verwen-
dung der Eigenschaft des Bernsteinpolynoms, wandelt der RSFC die nichtkonvexen Be-
schriankungen in lineare Beschréankungen um. Somit kann dieses Verfahren eine stiickweise
Polynomtrajektorie optimieren, indem QP nur einmal verwendet wird, und es garantiert,
dass eine praktikable Losung von QP keine Kollision und keinen Deadlock verursacht.
Die RSFC zwischen dem i-ten und dem j-ten Agenten sind als konvexe Mengen wie folgt
definiert, RSF Ci’j, <« RSF C’j\’j, die nicht in den Kollisionsbereich zwischen dem i-ten
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und dem j-ten Agent eindringen und sequenziell verbunden sind.

RSFCH nCY =@, m=1,-M (5.20)
RSFCY & RSFC., +@, m=1,-- M—1 (5.21)

C’;’ier ist ein Interkollisionsmodell, das rechteckiges Parallel-flach zum Koérperrahmen des

i-ten Quadrotors ausgerichtet ist, zwischen dem i-ten und dem j-ten Quadrotor. Es ist

zu beachten, dass ol

imier fUr jedes Agentenpaar variieren kann, was bedeutet, dass es

unterschiedliche Gréflen von Quadrotoren handhaben kann. In dieser Arbeit werden die
Linge und Breite von C’Z;iw als 2(r* +17) und eine Hohe als 2cg, (r' + 1) zugewiesen,
um den Downwash-Effekt zu beriicksichtigen, wobei ¢4, der Downwash-Koeffizient ist.
Die Trajektorie des j-ten Quadrotors kollidiert nicht mit dem i-ten Quadrotor, wenn fiir

beliebiges t € [0,T] existiert m € {1, -, M}, so dass (p’(t) — p'(t)) € RSFC"/.
Die Konstruktion des RSFC ist in den Abbildungen 6.6 und 6.9 beschrieben, zur Ver-

einfachung dargestellt in einem 2D-Raum. Zunéchst werden die initialen Trajektorien in
relative Trajektorien fiir jedes Agentenpaar konvertiert. Die relative Trajektorie des i-ten
und des j-ten Quadrotors 77 kann durch Subtrahieren entsprechender Wegpunkte von
zwei initiale Trajektorien erhalten werden, wie in Abbildung 6.6 dargestellt. Es gibt sechs
RSFC-Kandidaten in Richtung +z, +y, 2, um die Anzahl der Entscheidungsvariablen
im Optimierungsschritt zu reduzieren, und jeder RSFC-Kandidat RSFC), ist wie folgt
definiert:

RSFC, = (5.22)

{p|p'nu>ri+rj}, p=tx,+y
}, p==xz

{plp-n.>canlr +17)

n, ist ein Einheitsvektor in Richtung p € {£x, +y, +2z}. Fiir jeden Wegpunkt 77 [k] in

77 kann jeder RSFC ausgewihlt sein, wenn die folgende Bedingung erfiillt ist:

7 [kl n, >0 (5.23)

Dann wird ein geeigneter RSFC aus den RSFC-Kandidaten ausgewihlt. Redundante
RSFC-Ubergéinge entlang der Wegpunkte kénnen jedoch die Anzahl der Polynomseg-
mente und die Rechenzeit erhthen. Abbildung 6.9 zeigt ein Beispiel dafiir. Zur Erstellung
einer glatten relativen Trajektorie ist es erforderlich, dass zwei Polynomsegmente als Er-
satz fiir die relative Trajektorie dienen, wenn es einen Ubergang von RSFC entlang der
Wegpunkte gibt (z. B. Abbildung 6.7 RSF Ci’j — RSF C’;’j). Aber wenn es drei Uberginge
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—————a T
! }r‘ +r!
.
] -
i,
1 cincer

a) Initiale Trajektorien des i-ten (rot) und j-ten (blau) b) Relative initiale Trajektorie des j-ten Quadrotors in Be-
Quadrotors zug auf den i-ten Quadrotor

Abbildung 5.8: Die relativ initiale Trajektorie [12]

gibt (wie in Abbildung 6.8 RSF Ci’j — RSF C;’j — RSF C;’j — RSF Ci’j), miissen zwei
zusitzliche Polynomsegmente geplant werden. Der Greedy-Algorithmus (13) kommt zur

Anwendung, um die Anzahl der RSFC-Uberginge zu minimieren.

/‘i—’_—_. T — -
QS'FE-SJ
/ RS.F:.J.,[ // 3

. RSFC!| . RSFC)!
Cinter Cliter
1 RsFeh
RsFCy!
a) RSFC Konstruktion b) Beispiel fiir einen redundanten RSFC-Ubergang.

Abbildung 5.9: RSFC [12]
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Algorithm 13: Erstellung des RSFCs (buildRSFC)
Input: 7ri, o , 3D-Belegungskarte ¢

Output: RSFC RSFC"

Linaw — maz(size(n'), size(7)) ;

2 RSFCY « @;

for Yy € {#x,+y, 2} do

‘ initialize s, to 0 ;

jun

w

'y

5 end

6 forn <1 tol,,,, do

7 | for Vyu € {£z,+y, £z} do

8 if (7' [n]-7"[n])- n, > 0 then
9 if n =1 then

10 ‘ s, [n] « 1;

11 end

12 s,[n] < s, [n=1]+1

13 end

14 end
15 end

16 N < Lz

17y < argmax, (s, [n]);

18 RSFC" push_front (RSFC,,,);
19 nen-—s,, [n];

20 while n > 0 do

20| iy < argmazg .y, (s, [n]);
22 RSFC" push_front(RSFC,,,,);
23 ne<n =S, [n]a

24 end

25 return RSFC’i’j;

Der Algorithmus empfiangt 7' und 7 als Eingabe und gibt RSF C"™ guriick. RSFC™
ist als leeres Array initialisiert (Zeile 2), und s, ist als ein Array aller Nullen mit der
Léange l,,,, initialisiert (Zeile 4-5). Nach der Initialisierung iiberpriift der Algorithmus
die RSFC-Kandidaten mit (5.23) und speichert das Ergebnis in s, (Zeilen 8-13). Am
Ende des relativen Pfads wird ein RSFC-Kandidat gefunden, der die maximale Anzahl
von Wegpunkten enthilt, und der Kandidat wird im RSFC™ eingefiigt (Zeilen 17-18).
Danach geht es zum letzten Wegpunkt (Zeile 19). Der Algorithmus findet wieder das

Maximum des Kandidaten, bis es den Startpunkt des relativen Pfades erreicht (Zeilen
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20-24). Es ist zu beobachten, dass sich der neue Kandidat nicht auf der dem vorherigen
Kandidaten gegeniiberliegenden Seite befinden darf, da Quadrotoren nicht durch einen

leeren Raum zwischen zwei gegeniiberliegenden Kandidaten springen kénnen (Zeile 21).

5.3.5 Dummy-Agenten

Das gleichzeitige Optimieren aller Kontrollpunkte von Polynomen kann ein Skalierbar-
keitsproblem verursachen, da die zeitliche Komplexitit des QP-Losers O(n3) betréagt. Hier
wird eine effiziente sequenzielle Optimierungsmethode unter Verwendung von Dummy-

Agenten vorgestellt. Algorithmus 14 zeigt den Prozess der sequenziellen Optimierung.

Algorithm 14: Trajektorieoptimierung (trajOpt)
Input: initiale Trajektorie m, SFC’W, RSFCY>
Output: Trajektorie p’ ()

N
pdmy(t) = (p(c)lmy(t)v '”apdmy(t)) « planDummY(W);
2 for [ < 1 to N, do
3 b « agents in 1" batch ;

b b b Vi, j>i  VYigd .
p (t) « solveQP (7w, SFC”, RSFC s Py (1)) ;
pdmy(t) - p(t),

6 end
return p°(t), -+, p" (£);

=

'y

ot

;N

Zunichst werden die Trajektorien fiir Dummy-Agenten pgy,,(t) unter Verwendung der

folgenden Kontrollpunkte cfmk erstellt (Zeile 1):

an—lv k=0>”'7¢_1
C;L'n,k = an7 k=n—(¢—1),~~,n (524)

%

(2
T € <7rm_1,7rm>, else

Als Néchstes werden die Agenten in N, Stapeln aufgeteilt und das QP-Problem fiir den
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Stapel b sieht wie folgt aus (Zeilen 3-4) [61]:

e T
Minimieren ¢ Qc,

Erfiillen A.,c=1b

eqr
cimk = Kontrollpunkte von pilmy(t),
G € SFC,,

= Cus € RSFCLY

J
Cm,k

N

N
——M(n+1)

cE]RNb
N

— (M+1)¢px——M(n+1)

A, € RV

Ny

Y ¢ bm,k

Y €b,m,k
Vi, j > i,m,k

(5.25)

5.26
5.27
5.28

(
(
(
(5.29

)
)
)
)

Die Anzahl der Ungleichheitsbeschrinkungen ist (N — %(Nﬁb + 1))%M (n +1). pfjmy(t)

ist die Trajektorie fiir den i-ten Dummy-Agenten. Zuletzt werden die Trajektorien von

Dummy-Agenten durch die zuvor geplanten Trajektorien ersetzt und die Trajektorie fiir

den néchsten Stapel wird geplant (Zeile 5).

c) Ersetzen der Dummy-Agenten durch den vorherigen Sta-
pel

d) Planen fiir den nichsten Stapel

Abbildung 5.10: Dummy-Agenten [13]

Abbildung 6.14 zeigt den Gesamtprozess der Dummy-Agenten (N, = 2). Dummy-Agenten

werden als schwarze Kreise dargestellt, und Agenten im aktuellen Stapel werden als farbi-

ge Kreise dargestellt. Fiir jede Iteration werden die Trajektorien fiir den aktuellen Stapel

79



5 METHODEN

(Farblinie) geplant, die die Trajektorien von Dummy-Agenten (schwarze Linie) vermeidet.
Fiir jede Iteration werden die Dummy-Agenten mit Ausnahme der Agenten im aktuellen
Stapel eingestellt (Abbildung 6.10). Dann plant der Algorithmus die Pfade fiir den ak-
tuellen Stapel, um Dummy-Agenten zu vermeiden (Abbildung 6.11). Danach werden die
Agenten im aktuellen Stapel bei der néchsten Iteration als Dummy-Agenten verwendet
(Abbildung 6.12). Am Ende der Iteration werden kollisionsfreie Trajektorien ohne Ver-
klemmung gefunden, da alle Agenten so geplant sind, dass der vorherige Stapel vermieden
wird (Abbildung 6.13). Diese sequenzielle Methode mit Dummy-Agenten kann eine bes-
sere Skalierbarkeit erzielen, da die hohe zeitliche Komplexitdat des QP-Losers vermieden
wird. Wenn die Anzahl der Agenten zunimmt, wihrend die Anzahl der Entscheidungs-
variablen von QP beibehalten wird, indem die Anzahl des Stapels sich erhoht. Dariiber
hinaus ist es nach [13] erwiesen, dass die Methode keinen Optimierungsfehler aufgrund

nicht realisierbarer Einschrinkungen verursacht.

5.3.6 Zeitzuweisung

Nach der Konstruktion von SFC und RSFC ist es erforderlich, dass das Zeitsegment der
stiickweisen Polynomtrajektorie dem entsprechenden SFC und RSFC zugeordnet wird.

p(t) ist das m-te Segment der Trajektorie p'(¢) in t € {tm_l, tm}. Das Zeitsegment des

i-ten Quadrotors ist folgendermafien definiert:
ty = [to, -+ tu] (5.30)

Fiir diese Arbeit werden die Trajektorien aller Agenten so eingestellt, dass sie das gleiche
Zeitsegment t, haben, um die konvexe Hiilleneigenschaft des Bernstein-Basispolynoms zu
verwenden. Dies kann jedoch zu vielen Entscheidungsvariablen fithren und somit die Re-
chenzeit verlangern. Daher wird das folgende Verfahren verwendet, um die Anzahl von
Entscheidungsvariablen zu verringern. Algorithmus 15 zeigt den Prozess zum Finden ei-
nes Zeitsegmentteils. Der Algorithmus empfangt SFC oder RSFC und die initialen oder
relativen Trajektorien als Eingaben und sucht nach dem mittleren Wegpunkt zwischen
dem Schnittpunkt zweier aufeinanderfolgender konvexer Mengen (Zeilen 11-13). Danach
zeichnet der Algorithmus den Index dieses mittleren Wegpunkts auf, um ihn als den Ort
zuzuweisen, an dem der SFC- oder RSFC-Ubergang stattfindet (Zeile 14). Mit anderen
Worten, der m-te SFC oder RSFC wird vor dem Zeitpunkt (n+ [%J) * 1y, ZUgEWiesen,
und der m+1-ten SFC oder RSFC wird nach dem Zeitpunkt (n + L%J) * e ZUZEWIC-

count
2

der m-ten und m+I1-ten konvexen Mengen ist. Im SFC-Fall ist es garantiert, dass in

sen, wobei n + |_ J) der Index des mittleren Wegpunktes zwischen dem Schnittpunkt

zwei aufeinander folgenden SFC ein Wegpunkt vorhanden ist, da der Wegpunkt iiber die
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Achsensuchmethode mit SFC verbunden ist. Im RSFC-Fall gibt es jedoch méglicherweise

keinen Wegpunkt in einer Kreuzung zwischen zwei aufeinanderfolgenden RSFC (Zeile 17).

In diesem Fall wird der Integerindex nicht mehr verwendet, da er eine nicht realisierbare

Einschrankung darstellen kann, wenn SFC und RSFC sich gleichzeitig dndern. Stattdes-

sen steht eine heuristische Methode zur Verfiigung, die den RSFC-Ubergang zeitverzogert,

um die gleichzeitige Anderung von SFC und RSFC zu vermeiden (Zeile 18). Dies kann

die Anzahl der Entscheidungsvariablen erhohen, aber die Erfolgsrate nimmt beim Finden

einer realisierbaren Flugbahn zu. Dieser Algorithmus gibt immer ein Array mit einer ma-

ximalen Grofle von 21,,,,, zuriick, so dass garantiert ist, dass die stiickweise Trajektorie

maximal 21[,,,, Segmente aufweist.

Algorithm 15: Zeitsegment zuweisen (findTimeSegment)

Input: initiale Trajektorie m oder relative Trajektorie 7l , Array von

sequenziellen konvexen Mengen C, Zeitschritt .,

Output: Zeitsegment ¢,

1ty « @,

2 m <« 1;

3 forn <1 tol,,,, do

4

5

6

10

11

12

13

14

15

16

17

18

19

20

21

if m = size(C') then
‘ break;
end
if 7/[n] € (C[m]nC[m+1]) then
count « 1;
while 7 [n + count] € (C[m]n C[m +1]) and n + count < l,,,, do
count « count + 1;
tsp-push_back((n + [%’”J) * trep)
n—n+ [co;ntJ;
mem+1;
end
end
else if 7[n] € C[m + 1] then
tsp-push_back((n + 0.5) * ty.,);
m <« m+1;
end
end
return tg,;

spy

Nach der Erstellung des Zeitsegments werden alle Zeitsegmente kombiniert und sortiert.
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Das bedeutet, dass doppelte Elemente geloscht werden und das Gesamtzeitsegment ge-
neriert wird, indem die Startzeit und die Gesamtflugzeit an jedes Ende des kombinierten
Arrays angehéngt werden. Diese Methode kann die Grofle des gesamten Zeitsegments re-
duzieren, indem die Elemente des Zeitsegmentteils so weit wie moglich iiberlappt werden.

Durch Vergleichen von ¢, und ¢, werden SFC und RSFC dem Zeitsegment zugeordnet.
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6 Simulation und Evaluation

In diesem Kapitel werden die Simulation und Evaluation unter Verwendung des vor-
ab erarbeiteten Absicherungskonzeptes sowie der implementierten Verarbeitungsarchitek-
tur beschrieben. Im Detail erlautert werden sollen hierbei die Architektur der Simula-
tion, die Simulation der statischen Methode und der dynamischen Methode sowie die
Evaluation der beiden Methoden. Zuerst wird der Konstruktionsprozess der Simulation
vorgestellt, ndmlich die Verbindung zwischen ROS-Framework, PX4-Flugsteuerung und
Gazebo-Simulator. Darauf folgt eine kurze Einfiihrung in die Simulation der beiden Me-
thoden. Den Abschluss bilden die Bewertung und Evaluation der Simulationsergebnisse
unter Beriicksichtigung verschiedener Faktoren, z. B. Rechenzeiten, Robustheit und Lei-

stungsfahigkeit.

6.1 Simulation

Um die vom Pfadplaner generierten Trajektorien zu demonstrieren, ist eine Tracking-
Steuerung notwendig, damit die Drohne geméfl dieser vorhandenen Trajektorie in Be-
wegung gehalten werden kann. Deshalb werden zunichst zwei Verfahren zur Tracking-
Steuerung im Rahmen dieser Arbeit vorgestellt, ndmlich die lineare Tracking-Steuerung
und die PID-Tracking-Steuerung. Dem folgt eine Ubersicht zur Architektur und zum In-

formationsfluss der Demonstration.

6.1.1 Trajektorienfolger

Der lineare Trajektorienfolger basiert auf der Differenz zwischen der Zieltrajektorienposi-
tion und der aktuellen Trajektorienposition, um die die Geschwindigkeit und Richtung der
Bewegung zu bestimmen. Der Pfadpunkt auf der Trajektorie wird als Referenzpunkt p, des
Folgers verwendet, und die vom Simulator gemessene Position wird als Echtzeitposition p,
verwendet. Entsprechend der Genauigkeit scannt der Knoten die beiden Positionen mit ei-
ner festgelegten Frequenz. Abbildung 6.1 zeigt die lineare Steuerung, wobei v = (v,,v,,v,)
die Geschwindigkeit von p, nach p, ist. v,,v,, v, sind die Geschwindigkeitskomponenten
auf der X-Achse, der Y-Achse und der Z-Achse.
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Po=(*0.¥0 20
po=( xg.¥0,Zp)

Abbildung 6.1: Der lineare Trajektorienfolger

Die euklidische Abstand /\s zwischen p, und p, ist gleich p, — py. Die Durchschnitts-
geschwindigkeit wird mit V}; bezeichnet. Dann werden die Geschwindigkeitskomponenten

vy, Uy, U, Wie folgt berechnet:

A s = (@ = 20)2 + (4 — 90)? + (2, — 2)? (6.1)

v¥ =02+ 02 + 0l (6.2)
T, — T, — X

e R sy i s A 03
Yr — Y Yr — Y

O e e EES ey e s M o4
Zp — Z Zp — Z

S b Ve = 90> + (v, _;0)2 e oar K (0

Im Unterschied zum linearen Trajektorienfolger basiert der PID-Trajektorienfolger auf
nicht nur auf der Positionsdifferenz, sondern auch auf dem Geschwindigkeitsfehler, damit
die Position bei Storeinfliissen moglichst gut eingehalten wird [77] [78] [79]. In Abbildung
6.2 ist die PID-Regelung dargestellt. Der PID-Regler ist von den Standard-Reglern am
anpassungsfahigsten, verhindert bei konstantem Sollwert eine bleibende Regelabweichung
bei Fiithrungs- und Stérgroffensprung und kann Verzogerungen der Regelstrecke kompen-
sieren und damit die Regelstrecke vereinfachen. Durch die Integration von Positionsfehlern
und die Regelung von Geschwindigkeitsfehlern wird die geregelte Beschleunigung ausge-
rechnet. Bei der Positionssteuerung wird bei einem Sollwertsprung fiir die Position meist
ein Referenzprofil fiir Geschwindigkeit und Beschleunigung generiert. Entsprechend dem
Sollwertverlauf und einem linearisierten Streckenverhalten wird eine Beschleunigungsvor-
steuerung berechnet, die ohne weitere Stellgroflenanteile die linearisierte Strecke entspre-
chend den Referenzprofilen positionieren wiirde. Der eigentliche Regler, also die anderen
StellgroBenanteile, miissen dann nur noch Nichtlinearitdten und unbekannte duflere Ein-

fliisse ausregeln.
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Beschleunigungsvorsteuerung

ay

Sollwert

— F

Pr

P-Verstarkung

f =>—' s o o a
Positiongfehler
I-Verstirkung Integrator Beschleunigung
Po
- ¥ D 5
aktuelle Position

Geschwindigkeitsfehler
D-Verstarkung Differenzierer

Abbildung 6.2: PID-Trajektorienfolger

6.1.2 Simulation der statischen Methode

Die Architektur der statischen Methode ist in Abbildung 6.3 dargestellt. Die Simula-
tion und Visualisierung bestehen darin, die Kommunikation und Informationsverarbei-
tung zwischen verschiedenen Modulen im Rahmen des ROS-Frameworks zu realisieren.
Im OctoMap-Modul wird eine Belegungskarte generiert, die Hindernisse unterschiedli-
cher Form und Volumen enthilt. Durch den OctoMap-Knoten wird die Belegungskarte
zum ROS-Knoten multi_agents_Planner_3d gesendet, damit der Pfadplaner die Hinder-
nisse erkennen kann. Auflerdem wird die Belegungskarte im Kartenkonverter-Modul nach
World-file umgesetzt, um die Belegungskarte in Gazebo zu modellieren. Im Planermodul
wird eine kollisionsfreie Trajektorie fiir jede Drohne geplant, und die Trajektorien wer-
den durch ROS-Knoten multi_agents_Planner_3d zu ROS-Knoten trajectory_controller_uav
weitergeleitet. Der Trajektorienfolger empfingt die Trajektorien und sendet die aktuel-
len Positionskontrollpunkte und Geschwindigkeit an Gazebo durch MAVROS und PX4.
Gleichzeitig werden die aktuelle Bewegungszustinde jeder Drohne von Gazebo an den
Trajektorienfolger zuriickgegeben, damit der Regler den Fehler reduzieren kann. Im Gaz-
abo_Gui wird die Bewegung der Drohne angezeigt. Es ist sichtbar zu priifen, ob die Drohne

die Hindernisse vermeiden kann.

6.1.3 Simulation der dynamischen Methode

Abbildung 6.4 zeigt die Architektur der dynamischen Methode, die der statischen Metho-
de dhnelt. Der Unterschied liegt im Planermodul, in dem der 4D-Planer die Trajektorien
fiir jede Drohne berechnet. Der ROS-Knoten multi_agents_Planner_4d empfangt die Be-
legungskarte aus den OctoMap-Knoten. Nach der dynamischen Pfadplanung werden die

Trajektorien an trajectory_controller_uav gesendet. Der Gazebo-Simulator erhalt die ak-
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>

v
Informierter RRT*

v

Trajektorienoptimierung [«—

Cctomap Server

multi agents Planner 3d

Octomap

3-Dimensionen Planner

Octoma@

<traj ectory_controller uav

o

Rator Simulator

Kartenkonverter Linearer/P| D-Trajektorienfolged

MAVLInk Trajektorienfolger

PX4 Launch

MAVROH und PX4

Informationsiubertragung

—_—
.
I:l Module

Gazebo_ROS_Control
I:l Algorithmen/Service
> ROSKnoten
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Abbildung 6.3: Architektur der Simulation der 3D-Methode

tuellen Positionskontrollpunkte und Daten zur Geschwindigkeit und Beschleunigung von
MAVROS. Abschlielend werden die Belegungskarte und der Bewegungszustand der Droh-

ne in Gazebo simuliert.

6.2 Evaluation

In diesem Abschnitt werden unterschiedliche Faktoren der beiden Algorithmen ana-
lysiert. Untersucht werden dazu die Pfadkosten, Erfolgsraten, Rechenzeiten, Anzahl
der Drohnen, Hindernisdichte und Robustheit, um die beiden Methoden zu ver-
gleichen, ihre jeweiligen Vor- und Nachteile aufzuzeigen und den Anwendungsbe-
reich jeder Methode zu erldutern. Zur Untersuchung der Abhéngigkeit von der Hin-

dernisdichte werden verschiedene 3D-Belegungskarten mit unterschiedlicher Anzahl
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Abbildung 6.4: Architektur der Simulation der 4D-Methode

von Hindernissen generiert. Fiir diese Arbeit ist die 3D-Belegungskarte im Raum
{(x,y,2) ||z € [-20,20],y € [-20,20],2 € [0,10]} (m) definiert. Die Diagramme in
Abbildung 6.5 zeigen Réume mit zylindrischen Hindernissen mit einer Héhe von 7 m und
einem Durchmesser von 0,1 m bis 0,4 m in unterschiedlicher Anzahl und damit Dichte,
von 50 (niedrige Dichte) bis 600 (extreme Dichte).

Zur Analyse der Qualitéit der Trajektorie wird der Begriff die Glétte des Pfades G wie
folgend 6.6 dargestellt. Die Idee besteht darin, die Dreiecke zu betrachten, die durch
aufeinanderfolgende Pfadsegmente s;_», s;_1, s; gebildet werden, und den Winkel zwischen
diesen Segmenten unter Verwendung des Satzes von Pythagoras zu berechnen [80]. Dann
wird der AuBenwinkel fiir den berechneten Winkel durch die Pfadsegmente normalisiert
und triagt zur Pfadglatte bei. Dabei ist a; der Abstand von s;_, bis s;_;, b; der Abstand

von s;_; bis s; und ¢; der Abstand von s;_5 bis s;. Fiir einen geraden Pfad ist die Glétte
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b) 100 zylindrisches Hinder (mittlere Dichte)

\\‘\\\W%

i
f

d) 400 zylindrisches Hindernisse (sehr hohe Dichte)

\

e) 600 zylindrisches Hindernisse (extreme Dichte)

Abbildung 6.5: 3D-Belegungskarte mit unterschiedlicher Anzahl von Hindernissen

gleich 0.Je ndher der Wert an 0 liegt, desto glatter ist der Pfad.

n=1(2(mr — arccos( )) i
a; + b; (6.6)

¢=2

Die vorgeschlagenen Methoden werden in C++ ausgefiihrt und auf einem PC mit Ubun-
tu 16.04 mit Intel Xeon(R) CPU E3-1230 V2 3.30GHz x 8 und Grafikkarte Quadro
600/PCle/SSE2 simuliert. Das Gazebo 7 und Firmwire 1.8.2 werden verwendet, um den

Bewegungszustand der Drohne in der tatsédchlichen Umgebung zu modellieren und zu
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visualisieren.

6.2.1 FEvaluation der statischen Methode

Zur Evaluation der statischen Methode werden die Pfadkosten, die Rechenzeiten, die An-
zahl der Drohnen, die Pfadglidtte und die Hindernisdichte betrachtet. In der statischen
Methode gibt es eine Zeitfunktion, die ein Zeitlimit bzw. die Anzahl der Sekunden defi-
niert, die der informierte RRT* Algorithmus fiir die Planung verwenden darf. Je linger
die Zeit ist, desto mehr Zustidnde werden vom Algorithmus abgetastet. Zuerst wird das
Zeitlimit von 0,1 bis 40 Sekunden festgelegt, um die Beziehung zwischen Zeitlimit und die
Qualitédt der Losung zu analysieren. Abbildung 6.6 zeigt die Pfadkosten in Abhéngigkeit
vom Zeitlimit in der Karte mit 200 Hindernissen. Aufgrund der zufélligen Stichprobe des
Algorithmus nimmt die Pfadléinge nicht notwendigerweise linear mit der Zeit ab, aber
der Trend zeigt, dass die Pfadlinge mit der Zeit eine signifikante Abnahme aufweist.
Wenn die Planungszeit zu lang ist, nimmt allerdings auch die Reaktionsgeschwindigkeit
des gesamten Systems ab. Als Ausgleich zwischen beiden Faktoren wird das Zeitlimit in

statischer Methode auf eine Sekunde gesetzt. In Abbildung 6.7 stellt den Zusammenhang

ZEITLIMIT UND ROUTENKOSTEN VON 8 DROHNEN

e Routenkosten

e
[
-
173
(]
-
[
[
-
3
o
o<

0.1 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2
Zeitimit (Sekunden)

Abbildung 6.6: Die Beziehung zwischen Zeitlimit und Routenkosten

zwischen der Rechenzeit und der Anzahl der Drohnen dar. Dabei wird deutlich, dass
die Rechenzeit mit der Anzahl der Drohnen steigt. Fiir jede Planung ist die Rechenzeit
gleich Planungszeit plus Optimierungszeit. Die Planungszeit wurde wie oben beschrie-

ben auf eine Sekunde gesetzt, und die Optimierungszeit ist abhéngig von die Pfadlénge.
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Die Rechenzeit fiir 64 Drohnen ist gleich der Planungszeit fiir 64 Drohnen plus Opti-
mierungszeit fiir 64 Pfade. Die Planungszeit fiir 64 Drohnen ist 64 Sekunden und die
Optimierungszeit ist in diesem Fall 14 Sekunden. Um die Rechenzeit zu reduzieren, gibt
es zwei Moglichkeiten, ndmlich die Reduktion der Planungszeit bzw. des Zeitlimits oder
die Verbesserung der Optimierungseffizienz. Letztere ist in dieser Arbeit abhéngig von den
Parametern der B-Spline-Kurve, ndmlich maximale Schritte smoothSteps und minimale
Anderungen pathMinChange. Abbildung 6.8 skizziert den Zusammenhang zwischen der
Optimierungszeit und den B-Spline Parametern. Die Optimierungszeit nimmt mit abneh-
mender pathMinChange und zunehmender smoothSteps zu. Abbildungen 6.9 zeigt die
Pfade nach der B-Spline-Optimierung mit unterschiedlichen Werten fiir path MinChange
und smoothSteps. Die Diagramme a) bis d) zeigen, dass die Glitte des Pfades mit mehr
Optimierungsschritten zunimmt. Die Diagramme e) bis h) zeigen den Prozess der konti-
nuierlichen Optimierung der Glétte des Pfades mit pathMinChange von 0.5 bis 0.001.
Daraus ldsst sich die Schlussfolgerung ziehen, dass kleinere path MinChange und mehr
smoothSteps zwar die Glatte des Pfades verbessern, dabei aber die Optimierungszeit
verldngern. In der folgenden Simulation wird pathMinChange auf 0.001 und smoothSteps
auf 5 konfiguriert.

RECHENZEITEN UND ANZAHL DER DROHNEN

"
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8.532333333

2.058333333 4.161333333

Anzahl der Drohnen

Abbildung 6.7: Rechenzeit und Anzahl der Drohnen

Abbildung 6.10 beschreibt die Gliatte von 32 Drohnenpfaden, wenn pathMinChange =
0.001 und smoothSteps = 5 betragt. Gemafl der Grafik liegt die Glatte der Pfade zwi-
schen 0,1 und 0,6 und die Glétte aller 32 Pfade ist in diesem Intervall gleichméfig verteilt.
Das bedeutet, dass die sequenzielle Planung von der ersten bis zur 32. Drohne keine ne-

gativen Auswirkungen auf die Qualitdt des Pfades hat, wenn der Optimierungsparameter
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OPTIMIERUNGSZEIT UND MAXIMALE
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a) Die Optimierungszeit und die maximale Schritte b) Die Optimierungszeit und die minimale Anderungen

Abbildung 6.8: Die Optimierungszeit fiir 8 Drohnen mit B-Spline

gleich konfiguriert ist. Priorisierte Drohnen haben jedoch immer eine gréffere Auswahl an
planbarem Raum, da die spéter geplanten Drohnenpfade die zuvor geplanten Pfade als
Hindernisse beriicksichtigen miissen. Deshalb wird der planbare Raum, der fiir nachfol-
gende Drohnen (niedrige Prioritét) verfiighar ist, mit fortschreitender Planung kleiner.
Theoretisch ist die Chance einer Losung umso hoher, je hoher die Prioritdt der Drohne
ist. Je niedriger der Rang der Drohnen im zeitlichen Ablauf, desto kleiner ist der Raum,
den sie wahlen kénnen, und desto geringer ist die Wahrscheinlichkeit dafiir, eine bessere

Pfadlosung zu erhalten. Dieser Punkt wird in Kapitel 6.2.3 ausfiihrlich beschrieben.

Abbildung 6.11 skizziert die Ergebnisse der Simulation, um die Abhéngigkeit der Hin-
dernisdichte zu analysieren. Das Zeitlimit ist 1 Sekunde und die Optimierungsparameter
lauten pathMinChange = 0.001, smoothSteps = 5. Mit zunehmender Anzahl der Hinder-
nisse in der Karte von 50 bis 600 steigen die Rechenzeit, die Pfadkosten und die Glétte.
Dies zeigt, dass bei einer hoheren Dichte von Hindernissen in der Umgebung auch die

geplante Pfadldnge zunimmt, ebenso wie die fiir den Pfad erforderliche Optimierungszeit.

6.2.2 Evaluation der dynamischen Methode

Zur Evaluation der dynamischen Methode werden der Mindestabstand zwischen den Droh-
nen, die Rechenzeiten, die Anzahl der Drohnen und die Hindernisdichte betrachtet. Wie
in Kapitel 5.3.5 erldutert, werden Dummy-Agenten verwendet, um die sequenzielle Op-
timierungseffizienz zu verbessern. Deswegen ist der Stapel N, ein wichtiger Faktor fiir
dynamische Methode. Wenn es N Drohnen zur Pfadplanung gibt und der Stapel gleich
N, ist, betréigt die Anzahl der Pfade fiir jede Runde zur Optimierung Nlb Die Effizienz
der Algorithmusoptimierung kann durch Andern der Grole von N, bewertet werden. Ab-
bildung 6.12 zeigt die Rechenzeit der Pfadplanung fiir N = 16, 32,64, 128 Drohnen in
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Abbildung 6.9: Optimierungszeit fiir 8 Drohnen mit B-Spline
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DIE GLATTE FUR 32 DROHNEN PLANUNG
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Abbildung 6.10: Die Glitte von 32 Drohnen Pfade
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Abbildung 6.11: Evaluation zur statischen Methode in Abhéingigkeit von Hindernisdichte

Abhéngigkeit von N,. Wenn N, = 1 betragt, wird die sequenzielle Optimierungsmethode
nicht angewendet und alle Pfade werden gleichzeitig optimiert. In diesem Fall ergeben
sich jeweils maximale Rechenzeiten fiir N = 16, 32, 64, 128 Drohnen. Wenn N, von 1 auf 2
wechselt, wenn also die sequenzielle Optimierungsmethode zur Anwendung kommt, nimmt
die Rechenzeit stark ab. Wenn NV, von 2 weiter steigt, nimmt die Rechenzeit langsam ab.
Wenn N, = N, erhoht die Rechenzeit sich wieder, denn in dieser Situation ist die Opti-
mierungszeit jedes Schritts zwar sehr kurz, aber die Anzahl der Optimierungsschritte ist
zu hoch, und das Produkt der beiden steigt. Mit anderen Worten, in diesem Fall ist der

dominierende Faktor fiir die endgiiltige Rechenzeit nicht mehr die Optimierungszeit jedes
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6 SIMULATION UND EVALUATION

Schrittes, sondern die Anzahl der Optimierungsschritte. Wie aus dem Diagramm hervor-
geht,, eignet sich die sequenzielle Optimierung N, = 2 sehr gut fiir eine hohe Zahl von
Drohnen (N = 64,128, . ..). In folgender Simulation wird der Stapel N, auf Nﬂb = 4 gestellt,

was bedeutet, dass vier Pfade in einem Stapel optimiert werden. Abbildung 6.13 fasst die

Die Rechenzeit fur Pfadplanung
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16 Drohnen  9.31608 5.65222 5.26977 5.31259 5.38679

Anzahl der Batche
—e—128 Drohen —e—64 Drohnen 32 Drohnen 16 Drohnen

Abbildung 6.12: Rechenzeit fiir Pfadplanung in Abhéngigkeit von NV, 200 Hindernissen

Beziehung zwischen der Rechenzeit und der Anzahl der Drohnen (2, 4, 8, 16, 32, 64, 128)
zusammen. Mit der Verdoppelung der Anzahl von Drohnen erhoht sich die Rechenzeit
schnell. Abbildung 6.14 stellt die Rechenzeit, den Mindestabstand und die Pfadkosten
von 64 Drohnen in Abhéngigkeit zur Hindernisdichte (50 bis 600 Hindernisse) dar. Der
Mindestabstand ist der kleinste Abstand zwischen Drohnen wihrend ihres Fluges geméifl
dem geplanten Pfad. Die Pfadkosten sind die Summe der Pfadldngen aller 64 Drohnen. Es
ist deutlich zu erkennen,dass dass in der Karte mit zunehmender Dichte von Hindernissen
der Mindestabstand zwischen Drohnen iiber 1 Meter bleibt. Mit zunehmender Anzahl von
Hindernissen erhohen sich die Pfadkosten und die Rechenzeit entsprechend. Abbildung
6.15 zeigt den Pfadplanungs- und Simulationsprozess in der dynamischen Methode fiir 16
Drohnen. Die Startpunkte und Endpunkte sind auf (0,0, 5), (0,0,6),(2,0,5),(2,0,6),...
und (16,16,5), (16,16,6),(16,0,5),(16,0,6),... eingestellt. Die farbigen Kugeln re-
prisentieren die Drohnen und die Grofle der Kugeln représentiert die geometrische Grofie
der Drohne. Zur Simulation der dynamischen Methode wird die maximale Geschwindig-

keit der Drohne auf 2m/s eingestellt.
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Abbildung 6.13: Rechenzeit fiir Pfadplanung in Abhéngigkeit von der Anzahl der Drohnen
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Abbildung 6.14: Rechenzeit und Pfadkosten fiir Pfadplanung (64 Drohnen) in Abhingigkeit von der
Hindernisdichte

6.2.3 Bewertung der beiden Methoden

Im Folgenden werden die beiden in diesem Artikel untersuchten Methoden unter ver-
schiedenen Aspekten verglichen, z. B. Pfadkosten, Rechenzeit und Hindernisdichte. An-
schliefend werden die Ergebnisse der beiden Planungsmethoden anhand einiger spezieller
Karten analysiert. AbschlieSend werden die Vor- und Nachteile der beiden Methoden
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6 SIMULATION UND EVALUATION

Abbildung 6.15: Pfadplanung und Simulation fiir 16 Drohnen

zusammengefasst. Zur Evaluation der beiden Methoden basieren alle Simulationsdaten
auf derselben Karte mit demselben Start- und Endpunkt. Abbildungen 6.16 und 6.17
zeigen die Rechenzeit und gesamten Pfadkosten zunehmender Anzahl an Drohnen unter
Verwendung der beiden Methoden. Aus der Grafik 6.16 ist es deutlich, dass die Berech-
nungseffizienz der dynamischen Methode(4D) hoher als die der statischen Methode(3D)
ist, insbesondere wenn die Anzahl der Drohnen relativ grof ist. Das liegt daran, dass
die statische Methode(3D) eine sequenzielle Planung verwendet und fiir jede Drohne eine
feste Rechenzeit braucht. Wenn die Anzahl der Drohnen exponentiell zunimmt, nimmt
auch die Rechenzeit exponentiell zu. Im Gengensatz zur 3D-Methode verwendet die 4D-
Methode eine globale Planung, die auf dem ECBS-Algorithmus und dem MAPF-Problem
basiert. Aulerdem werden die Trajektorien aller Drohnen in NV, Stapeln optimiert, sodass
die Rechenzeit mit exponentiellem Wachstum der Anzahl der Drohnen einen linearen
Wachstumstrend zeigt. Abbildung 6.17 bildet die Pfadkosten der beiden Methoden mit
zunehmender Anzahl von Drohnen ab. Wenn die Anzahl der Drohnen nicht grof} ist,
N =< 16, unterscheiden sich die durch die beiden Methoden erzeugten Pfadkosten nicht
wesentlich. Wenn jedoch die Anzahl der Drohnen grofl ist, NV > 16, weist die statische
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Methode Vorteile auf. Die erzeugte Pfadldnge ist geringer als die der 4D-Methode, und
die relative Differenz vergroflert sich mit zunehmender Anzahl von Drohnen. Das liegt
daran, dass die 3D-Methode versucht, fiir jede Drohne einen suboptimalen Pfad in der
Karte zu finden. Die dynamische Methode ist darauf ausgerichtet, eine praktikable Losung

fiir alle Drohnen zu finden. Zur Evaluation der beiden Methoden in Abhéngigkeit von
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Abbildung 6.16: Vergleich der Rechenzeit, 200 Hindernisse in der Karte
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Abbildung 6.17: Vergleich der Pfadkosten, 200 Hindernisse in der Karte

der Hindernisdichte dienen Abbildungen 6.18 und 6.19. Nimmt die Anzahl der Hinder-
nisse auf der Karte zu, steigen deutlich erkennbar bei meiden Methoden die Pfadkosten
und Rechenzeit. Die Wachstumsrate der Rechenzeit ist bei der 4D-Methode héher als bei
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der 3D-Methode. Dies zeigt auch, dass die Anpassungsfahigkeit der 4D-Methode an die
Umgebung mit dichten Hindernissen nicht so gut wie die der 3D-Methode ist.
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Abbildung 6.18: Vergleich der Pfadkosten in Abhéingigkeit von Hindernisdichte
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Abbildung 6.19: Vergleich der Rechenzeit in Abhéngigkeit von Hindernisdichte

Zur Bewertung der Robustheit der beiden Methoden dienen die Karten in Abbildungen
6.20. In der Mitte des dargestellten Raumes liegt eine Wand (Lénge: 40 m, Hohe: 10 m,

Breite: 2 m) mit einem Fenster (Lédnge: 2 m, Hohe: 2 m, Breite: 2 m), die den Raum
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in zwei Hélften teilt. Vier Drohnen kénnen nur durch das Fenster von einer Seite des
Raumes auf die andere fliegen. Die Abbildung a) zeigt, dass bei einem Zeitlimit von eine
Sekunde die 3D-Methode nur drei Pfade finden kann. Ein Pfad scheitert, da er nicht
durch das Fenster fiihrt. Bei einem Zeitlimit von drei Sekunden finden alle vier Drohnen
einen Pfad. Im Gegensatz dazu werden vier mogliche Pfade bei der 4D-Methode bereits
nach 2,48 Sekunden gefunden. Mit abnehmender Griéfle des Fensters nehmen in beiden
Methoden die erforderliche Berechnungszeit zur Losungsfindung sowie die Ausfallrate zu.
Ist die Flidche des Fensters kleiner als die Querschnittsflache, die vier Drohnen gleichzeitig
aufnehmen kann, funktioniert die 3D-Methode nicht mehr. Die 4D-Methode kann jedoch
so lange wirksam bleiben, bis die Flache des Fensters kleiner als die Fléche ist, die eine
einzelne Drohne bendtigt. Wegen der zeitlichen Anpassung hat die 4D-Methode in extrem

engen Kanilen eine hohere Erfolgsrate als die 3D-Methode.

™\ /
\;\\ pavs
NERN A /
NN .
NN A /
\ y; Y
\ Y
r/ A o
[iNEE
yay \\\
/ N
N
N
/. \ N\
y/ ANEAN
/ N
/ N
/ N

a) Pfadplanung fiir vier Drohnen mit 3D-Methode, Zeitli- b) Pfadplanung fiir vier Drohnen mit 3D-Methode, Zeitli-
mit 1 Sekunde mit 3 Sekunden, Pfadkosten = 212.559

c) Pfadplanung fiir vier Drohnen mit 4D-Methode, Pfadko- d) Pfadplanung fiir vier Drohnen mit 4D-Methode, Seiten-
sten = 217.888, Draufsicht ansicht

Abbildung 6.20: Pfadplanung fiir vier Drohnen mit 3D und 4D Methode

Aus der Gegeniiberstellung der zwei Methoden lassen sich folgende Schlussfolgerungen

ziehen:

1 Vorteile der 3D-Methode:
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Pfadkosten: Es konnen suboptimale Pfade fiir Drohnen gefunden werden. Mit

zunehmender Planungszeit konnen kiirzere Pfade berechnet werden.

Sicherheit: Keine geplanten Pfade kreuzen sich, was den Sicherheitsfaktor der

Drohnen wéhrend des Fluges verbessert.

Rechenaufwand: Die Zeitdimension muss nicht beriicksichtigt werden, was den

Rechenaufwand verringert.

Kinematische Anforderungen: Keine Anforderung fiir Geschwindigkeit und Be-

schleunigung jeder Drohne.

Nachteile der 3D-Methode:

Rechenzeit: Bei hoher Anzahl von Drohnen (N = 32) ist die erforderliche Rechen-
zeit deutlich hoher als unter der 4D-Methode.

Raumnutzung: Da keine Uberschneidung von Pfaden zuléssig ist, ist die Raum-

nutzungsrate auf der Karte niedrig.

Vorteile der 4D-Methode:

Rechenzeit: Bei exponentiell steigender Anzahl der Drohnen erhéht sich die erfor-

derliche Planungszeit nur linear.

Raumnutzung: Durch zeitliche Anpassungen verbessert diese 4D-Methode die

Raumnutzungsrate.

Nachteile der 4D-Methode:

Pfadkosten: Bei hoher Zahl von Drohnen (N = 16) sind die Pfadkosten hoher als
in der 3D-Methode.

Sicherheit: Die Zeit aller Drohnenfliige muss synchronisiert werden. Andernfalls
besteht die Gefahr einer Kollision.

Kinematische Anforderung: Alle Drohnen haben die gleiche Geschwindigkeit.

Anwendungsintegration:

Die 3D-Methode eignet sich fiir die Pfadplanung mit grofler Entfernung und nied-

riger Hindernisdichte, z. B. bei der Warenlieferung.

Die 4D-Methode eignet sich fiir die Pfadplanung bei geringer Entfernung und hohe

Hindernisdichte, z. B. fiir die unternehmensinterne Logistik.
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7 Zusammenfassung und Ausblick

Im Folgenden werden zunéchst die Ergebnisse dieser Arbeit als Antworten auf die
zu Beginn als Schwerpunkte aufgeworfenen Fragen vorgestellt. AnschlieBend werden
Moglichkeiten zur Weiterentwicklung der FErgebnisse aufgezeigt. Zusétzlich werden
Ansétze vorgestellt, mit denen die im Teilprojekt (Intrafly) definierten Forschungsaspekte

weiterverfolgt werden konnen.

7.1 Fazit

Im Rahmen dieser Arbeit wurde ein Softwaremodul zur dreidimensionalen Routenplanung
einer variablen Anzahl von Flugrobotern entwickelt. Vorgegeben war dabei stets eine Um-
gebungskarte in Form einer OctoMap sowie die Start- und Zielpunkte der einzelnen Robo-
ter. Zur Implementierung der vorgestellten Software wurden das Robot Operating System
(ROS), die Softwarebibliotheken FCL und MAVLink sowie die Optimierungslosung Cplex
verwendet, wie in Kapitel 3 erldutert. Zur Simulation wurden der Gazebo-Simulator und
die PX4-Flugsteuerung vorgestellt. In Kapitel 4 wurden die in diesem Artikel verwendete
Algorithmen dargestellt. Der RRT-Algorithmus und die von diesem abgeleiteten Algorith-
men RRT* und informierter RRT* wurden fiir die Pfadplanung einer einzelnen Drohne
verwendet. Im Gegensatz dazu dienten die Algorithmen A*, CBS und ECBS zur Pfad-

planung fiir mehrere Drohnen.

Basierend auf der Erweiterung dieser beiden Arten von Algorithmen wurden zwei Metho-
den fiir die Planung kollisionsfreier sowie nach Flugstrecke optimierter roboterspezifischer
Trajektorien vorgestellt: eine statische 3D-Methode und eine dynamische 4D-Methode.
Zur Optimierung der Pfade dienten die am Ende von Kapitel 4 erlauterten Grundlagen
der Bernsteinpolynome. Die entwickelte und in Kapitel 5 beschriebene Verarbeitungsar-
chitektur der beiden Methoden zeichnet sich durch einen modularen Aufbau aus, wobei
die einzelnen Module unter Verwendung des ROS-Framework kommunizieren und unter-
schiedliche Module zusammenarbeiten. AbschlieBend wurde auf Basis der entwickelten
Pfadplanung sowie der implementierten Verarbeitungsarchitektur ein Demonstrator auf-
gebaut und getestet, beschrieben in Kapitel 6. Die von einer 3D-Belegungskarte erfassten
Umgebungsdaten bilden hierbei die Eingangsdaten fiir die beide Methoden, die es den

Drohnen ermoglichen, Hindernissen im Raum dynamisch auszuweichen und Kollisionen
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zwischen Drohnen zu vermeiden. Zusétzlich wurden die aus dem Pfadplaner erstellten
Trajektorien iiber die Steuerung eines Trajektorienfolgers an den Simulator gesendet. Die
Evaluation der beiden Methoden konzentrierte sich auf die Pfadkosten, die Rechenzeit,
die Robustheit und die Hindernisdichte. Zum Schluss wurden die Anwendungsintegration
sowie die Vor- und Nachteile der beiden Methoden zusammengefasst. Grundsétzlich sind
die in dieser Arbeit entwickelten Methoden geeignet zur Losung des MAPF-Problems
und zur Trajektorienoptimierung. Die Evaluation zeigt die Leistungsfahigkeit der zwei

Methoden in unterschiedlichen Karten und mit einer undefinierten Anzahl von Drohnen.

7.2 Ausblick

Nachfolgend werden zunéchst die aktuellen Einschriankungen sowie die Verbesserungs- und
Entwicklungspotenziale des im Rahmen der vorliegenden Arbeit realisierten Konzepts her-
ausgearbeitet. Anschlieend sollen Moglichkeiten vorgestellt werden, um den Pfadplaner
unter Verwendung weiterer Optimierungsmethoden, zusétzlicher Daten und Informatio-
nen sowie weiterfithrender Algorithmen zu verbessern und fiir die industrielle Anwendung

zu ertiichtigen.

7.2.1 Aktuelle Einschrinkungen

Die Bewertung der beiden in diesem Artikel genannten Methoden befindet sich jedoch
erst in der Simulationsphase. Fiir die reale Flugversuche miissen noch die folgende Punkte

beachtet werden.

Kartenkonstruktion: In dieser Arbeit werden die Umgebungen mit einer Belegungs-
karte modelliert, und die Hindernisse in der Karte werden durch Quader dargestellt.
Die Kollisionserkennung in den Algorithmen basiert ebenfalls auf der Belegungskar-
te. In realen Umgebungen sind die Formen von Hindernissen komplexer. Deswegen
ist eine Kartenkonstruktion mit hoherer Genauigkeit fiir reale Flugversuche erfor-
derlich.

Trajektorienfolger: In Simulationen werden ideale Umgebungen betrachtet. In
tatsidchlichen Umgebungen miissen auch Windwiderstand, die Kommunikationsla-
tenz zwischen Drohne und Host sowie Sensormessfehler beriicksichtigt werden. Der
Trajektorienfolger in dieser Arbeit ist nur fiir die Simulationsphase geeignet; fiir
reale Flugversuche bedarf es eines Trajektorienfolgers mit héherer Genauigkeit.
Zeitsynchronisation: Die 4D-Methode basiert auf zeitlicher Synchronisation, was

bedeutet, dass die Zeitbeschriftungen aller Drohnen konsistent sein miissen. Bei
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realen Flugversuchen ist es schwierig, sicherzustellen, dass die Zeit aller Drohnen
synchronisiert wurde.
Anzahl der Drohnen: Die 3D-Methode hat eine Begrenzung fiir die Anzahl der Droh-

nemn.

7.2.2 Weiterentwicklung der Methoden

Fiir eine Weiterentwicklung des vorgestellten Moduls empfiehlt sich eine Verbesserung des
Algorithmus zur MAPF-Problemlésung mit einer besseren Raumnutzung. Dabei sollten
moglichst alle entwickelten Kollisionsvermeidungs- und Datenweiterleitungsmethoden un-
tersucht werden. Ein Vorschlag fiir die Verbesserung der Raumnutzung der 3D-Methode
besteht im Modellieren einer dynamischen Belegungskarte. Dies bedeutet, dass fiir alle
Kuben in der Karte nicht nur die Ortsbezeichnungen mit dreidimensionalen Koordina-
ten, sondern auch die Zeitbezeichnungen verwendet werden, so dass der Pfadplaner die
Positionen und die Zeitpunkte der Kuben abfragen kann, um festzustellen, ob der Kubus
in diesem Zeitpunkt frei ist. Auch besteht die Moglichkeit, die 3D-Methode und 4D-
Methode zu integrieren, um die Vorteile beider Methoden zu nutzen und die Nachteile
zu eliminieren. Fiir die globale Planung wiirde dabei die 3D-Methode zuerst ausgefiihrt.
Die 4D-Methode wiirde aufgerufen, um lokale Kollisionen zu vermeiden. Eine Integration
dieser beiden Methoden klingt perfekt, aber die Synchronisation der Zeitdimension wére
immer noch eine grofie Herausforderung. Um die Flexibilitdt des Algorithmus zu ver-
bessern, liefle sich die Methode eventuell um zusatzliche Entscheidungsoptionen fiir die
Agenten erweitern, damit die Drohnen nicht nur durch Bewegung Kollisionen vermeiden,

sondern auch schweben, warten und ihren Flug verzégern kénnen.

Sollte es in Zukunft moglich sein, autonome Flugroboter mit einer den industriellen Nor-
men entsprechenden Flugsteuerung auszustatten und auch die Software allezeit sicher und
redundant zu gestalten, werden sich in den néichsten Jahren vor allem in Industrieunter-
nehmen vielfiltige Einsatzbereiche herausstellen. Vor allem hinsichtlich des wachsenden
Digitalisierungsbewusstseins, aber auch im Hinblick auf Effizienzvorteile und ein sichereres
Arbeitsumfeld, werden autonom fliegende Multikopterflotten in zukiinftigen Produktions-
und Lagerstétten grofien Einfluss haben. Sie bieten insbesondere durch ihre flexible Ein-
setzbarkeit, die Nutzung bisher ungenutzter Luftraume und die damit verbundene Schnel-
ligkeit deutliche Vorteile gegeniiber bisher eingesetzten Technologien. Vor allem in einem
vollsténdig vernetzten Internet der Dinge kann ihr gesamtes Potenzial optimal genutzt
werden. So wird es in Zukunft moglich sein, Produkte nicht nur deutlich variabler und
auf den Kunden hin angepasst zu produzieren, sondern auch gesamte Fertigungslinien

durch geringere Produktions-, Stillstands- und Transportzeiten effizienter und schlanker
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zu gestalten. Dadurch liefle sich der Ressourceneinsatz reduzieren und so die Fertigung
industrieller Giiter nachhaltiger gestalten. Zusétzlich wiirde die Arbeitsumgebung fiir den

Menschen sicherer und bequemer.
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