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Abstract—4D imaging radars, commonly known as 4D
radars, deliver comprehensive point cloud data that encap-
sulates range, azimuth, elevation, and Doppler velocity in-
formation even in harsh environmental conditions, such as
rain, snow, smoke, and fog. However, 4D radar data also
suffers from high noise and sparsity, which poses great chal-
lenges for SLAM applications. This paper presents RIV-SLAM,
a complete radar-inertial-velocity optimization-based graph
SLAM system designed to exploit the full potential of 4D
imaging radar technology. RIV-SLAM consists of four integral
components: front-end, loop closure, IMU pre-integration and
graph optimization, each optimized to effectively leverage the
unique attributes of radar data and tightly coupled with
IMU data. This is also the first SLAM system known to
us that outputs an optimized ego velocity. This capability
ensures reliable ego motion estimation under extreme conditions
(e.g., wheel odometry fails). Furthermore, we develop a new
ground extraction approach, specifically adapted for the 4D
imaging radar, which substantially improves the system’s z-axis
accuracy. Comprehensive evaluations of the RIV-SLAM system
on a variety of datasets demonstrate its superior performance,
significantly surpassing existing state-of-the-art Radar-SLAM
frameworks. The code of RIV-SLAM will be released at: RIV-
SLAM

I. INTRODUCTION

The development of autonomous robots and autonomous
vehicles has attracted considerable interest. Fundamental to
the autonomy of these machines is their ability to perform
state estimation, localization, and mapping with both pre-
cision and efficiency, especially in complex environments.
Over the years, numerous Simultaneous Localization and
Mapping (SLAM) algorithms have been presented for differ-
ent sensors, such as Light Detection and Ranging (LiDARs)
and cameras. However, it is widely recognized that the
performance of these sensors is significantly impacted by
various factors such as weather, lighting conditions, and
interference, including airborne particles, which can chal-
lenge their effectiveness in harsh environments [1][2]. To
address this limitation, the focus has turned to the mmWave
Radars (radio detection and ranging), as recent improvements
in electronics and materials science have enabled the radar
sensor to be housed in a smaller package than previous
products, and provide consistent reliability in diverse en-
vironments compared to cameras or LiDARs [3][4]. The
latest mmWave radar sensors are often referred to as 4D
imaging radars because they provide a denser 3D point cloud
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with richer information such as range, azimuth, elevation,
and Doppler velocity. With more spatial information and
increased resolution, 4D radars enable new possibilities for
SLAM applications.

N

Fig. 1: 4D Radar Data aligned with LiDAR Scan in forest
environment (colored: radar scan, black: LiDAR scan). The
magnitude and direction of Doppler’s velocity in radar scan
are illustrated by green arrows

Any opportunity, however, comes with risks. The de-
ployment of 4D radar poses two major challenges: 1) As
shown in Fig. 1, the data points captured by 4D radar tend
to be more sparse compared to 3D LiDAR, complicating
the extraction of reliable geometric features like edges and
planes. 2) The intrinsic physical properties of multichannel
4D radar systems can lead to the phenomenon of interference
waveforms. These are often misinterpreted as ghost objects
[5], which introduce larger errors in the scan matching
method widely used in LiDAR and camera-based SLAM.

In this context, several 4D imaging-radar-based SLAM
frameworks were proposed [6][7][8]. Inspired by these ap-
proaches, we present RIV-SLAM, a novel SLAM system
for 4D imaging radar based on Radar-Inertial-Velocity graph
optimization. In comparison to the previous work, the key
contributions of our work are as follows.

o RIV-SLAM is a complete system that makes full use of
4D radar data characteristics and consists of four parts:
front-end, loop closure, IMU pre-integration, and graph
optimization.

o We design a method to optimize radar Doppler velocity
with IMU data, which ultimately achieves an accurate and
stable estimation of ego velocity.

« We propose a ground extraction method tailored for 4D
imaging-radar data to increase the accuracy of the system
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in the z-axis and a hybrid scan registration approach
based on tight coupling of scan-to-scan and scan-to-map
registration.

o The proposed RIV-SLAM system is thoroughly evalu-
ated on various datasets, and the results obtained signifi-
cantly outperform the current state-of-the-art Radar-SLAM
frameworks.

This paper is structured as follows. Section II reviews
the related work. Section III presents the proposed RIV-
SLAM framework. The experimental evaluation is described
in Section. IV. Section V summarizes the study and discusses
future directions.

II. RELATED WORK

With advancements in mmWave sensor technology, re-
searchers are turning to 4D imaging radar sensors for robot
SLAM and autonomous vehicles. These sensors have many
benefits, including their small size, low cost, robustness to
environmental factors such as lighting conditions, and low
power consumption. In this section, we will take an in-depth
look at the state-of-the-art approaches to Radar Odometry
and 4D Radar SLAM.

A. Radar Ego-motion Estimation

Recent improvements in electronics and materials science
have allowed the radar (radio detection and ranging) sensor
to be packaged in smaller sizes compared to earlier products
and provide denser point cloud data. Besides this, the latest
radar sensors can also measure radial velocity using the
Doppler effect [9][4]. The advantage of radar odometry
over LO (LiDAR Odometry) or VO (Visual Odometry) is
that the Doppler radar can directly measure the relative
velocity of stationary objects within a single frame, rather
than deriving the relative velocity from the changing po-
sition of the stationary object in successive frames. Early
studies, such as the work presented in [10], proposed an
instantaneous approach for 2D radar ego velocity estimation
using only one radar scan with Doppler radial velocity
measurements. The authors utilized the RANdom SAmple
Consensus (RANSAC) algorithm to filter out the moving
objects in the environment and employed the Least-SQuares
estimator (LSQ) to optimize the radial velocity of stationary
objects relative to the radar to obtain radar ego velocity. In
[11], the approach was extended to multiple radar sensors
with joint spatial optimization. In our previous work [12],
we adopted a multi-strategy weighted LSQ optimization
approach to estimate the ego-motion of robots, which we
further improve in this work. To achieve higher accuracy, the
fusion of radar measurements with inertial data has shown
impressive results [13][14][3]. However, without the help of
yaw angle, the yaw drift increases with time due to changes
in the yaw rate of the MEMS IMU. To compensate for this,
the authors in [15][16] presented variants of Radar Odometry
based on further sensor data fusion, such as Radar Visual
Inertial Odometry, Radar Thermal Inertial Odometry, and
GNSS-aided Radar Inertial Odometry.

B. 4D Radar SLAM

The exploration of 4D radar SLAM is still at a nascent
stage, with existing research primarily centered around two
categories.

1) Indirect Method: The indirect method refers to feature
extraction and scan-matching, which have been exten-
sively researched on LiDAR-SLAM [17][18]. Similarly,
the radar point cloud is considered as an image and the
transformation between successive scans is computed by
extracting and matching specific features. A radar keypoint
extraction and graph scan matching is proposed in [1]
to enable a scanning-radar-based odometry. Hong et al.
[19] presented a complete Radar-SLAM framework for
360° scanning radar, including SURF feature extraction
and global pose graph optimization. However, feature
extraction suffers from the noise of measurements and
sparse radar point clouds, which makes it even harder
to apply to a 4D solid-state radar with an effective FoV
(Field of View) of 120°. Therefore, the most recent works
for 4D radar SLAM are based on Point cloud registra-
tion. In [7], a scan-to-submap NDT (Normal distribution
transform) is applied with point cloud registration, while
velocity pre-integration is used to improve optimization
performance. Zhang et al. [6] proposed an Adaptive Prob-
ability Distribution-GICP (APDGICP) to address radar
measurement noise, considering the spatial probability
distribution of each point in GICP [20]. Another approach
to improving the matching quality of sparse radar data is
4DiRIOM [21]. Point matching here is expressed in terms
of distribution-to-multiple-distribution constraints, which
can be achieved by matching the current scan with a sub-
map constructed by the mapping module, rather than scan-
to-scan matching. Huang et al. [22] leverages the RCS
(radar cross section) information to refine the point-to-
point correspondence, thus improving the estimation of
poses based on radar point matching.

2) Direct Method: Instead of using feature extraction and
scan matching, the direct method takes the entire radar
image as input and builds correspondence between con-
secutive scans in the Fourier domain. In [23] the Fourier
Mellin Transformation (FMT) is utilized to estimate the
transformation matrix taking advantage of phase correla-
tion properties. In Fast-MbyM [24] a CNN was proposed
to mask radar observations, and they decoupled the search
for angle and translation by utilizing the translational
invariance of the Fourier Transform.

C. Summary

Inspired by [6] [7] [8] [14] [21] [22], we propose our
RIV-SLAM system, which significantly advances existing
methods in several respects:

o RIV-SLAM is, to the best of our knowledge, the first radar
SLAM framework to optimize both pose and ego-motion.
« We propose a ground extraction method tailored for 4D
imaging-radar data to enhance the system’s performance.
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« A novel registration approach based on the anisotropy of
radar measurements is introduced to overcome sparsity
and noise in radar data.

« Extensive evaluations on a variety of datasets demonstrate
the accuracy, robustness, and real-time performance of
RIV-SLAM.

II1. METHODOLOGY

In this paper, we employ the following conventions to
represent the various mathematical and physical quantities
used in our research:

o Scalars will be printed as lowercase, non-bold letters (e.g.
b), and constants will be printed as uppercase, non-bold
letters (e.g. B).

Matrices will be printed as bold upper case letters, like B.
Vectors will be represented by bold lowercase letters, like
b.

Subscripts and superscripts are used to denote different
frames of reference. For example, a vector b in radar frame
{}" will be denoted as b", and the rotation from frame {}"
to frame {}* will be represented by either the matrix B’
or the quaternion b;. .

The global world frame is represented by {}* or {}"V.

By using this formalism, we aim to provide a clear and
consistent notation that facilitates communication and un-
derstanding of our mathematical models and results.

A. Framework Overview

Fig. 2 shows the overview of the proposed system con-
sisting of four components: Outlier Removal, Ground Ex-
traction, Loop Detection, and Graph Optimization.

B. Front-end

1) Ego Motion Estimation: 4D radar captures a series
of targets, detailing their three-dimensional positions p”,
corresponding Doppler radial velocities v}, and the signal-
to-noise ratio (SNR) s for every target. The radar coordinate
system is defined as {}". At any given moment, the radar’s
velocity is represented by v”. The Doppler velocity v is
calculated by taking the magnitude of the projection of the
relative velocity vector between the target and radar onto the
ray connecting the target and the radar, as illustrated in Fig.
1. This calculation involves the dot product of the target’s
velocity v in the radar frame {}" and the unit vector pointing
from the radar towards the target:

T
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—v) Vo=rpvp oy o (1)
If we assume that the targets within the scene remain
stationary and only the sensor platform is in motion, each
detected target acts as a constraint on the estimated velocity
of the radar. Thus, we obtain a set of N detections in a

radar measurement and write (1) in matrix notation, we get
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(2), and the residual e can be derived as (3).

T

T '
Vg1 Tz Ty Tzl -
T T T T v
Ug,2 Tzo2 Ty2 Tz2 e 5
I A O I )
. UT
—" P’ rr rr z
d,N z,N y,N z,N
-VS:HW'
e=Hv" +V) 3)

Taking into account the anisotropy of the radar measurement
errors, i.e., these errors appearing in (1) are not only velocity-
dependent, but also position-dependent, and in particular,
are related to the estimated angle of the object. Therefore,
we extend the multi-strategy weighting LSQ optimization
approach proposed in our previous work [12] to achieve
accurate and robust ego motion estimation. The correspon-
dence between residuals, azimuth contribution and SNR
consistency is defined as wresidual qyazimuth gang qpsnr,
Applying the residual definition of (3) yields the residual
with multi-strategy weighting LSQ optimization:

>

m

e — (wresidual X wazimuth . wsnr)(Hvr + VZ)

“4)

Remarkably, in practice, most targets in a 4D radar point
cloud are static in the world frame, and all static points
fulfill the (1). To account for the dynamic environment, a
three-point RANdom SAmple Consensus (RANSAC) [15]
approach is employed to eliminate dynamic outliers and
extract static inliers for (2). This also aids subsequent point
cloud registration by filtering out dynamic points and im-
proving the accuracy of scan matching. Since the angular
velocity w?, of the base frame {} leads to an additional
velocity in the radar frame {}", we apply rigid body motion
to determine w’, as (5).

v =wb x I} 4 o° 5)

2) Ground Extraction: Ground extraction from 4D radar
point clouds is a significant challenge, especially when
compared to much less noisy and dense point clouds captured
by LiDAR. This fundamental difference in data quality
means that the sophisticated algorithms developed for feature
extraction in LIDAR SLAM systems are often unsuitable for
direct application to 4D radar data. Therefore, we propose
a ground extraction method tailored for 4D radar data to
overcome the problems of sparsity, anisotropic noise and
feature obscurity inherent in radar point clouds. At the
beginning, when the system is completely stationary, we use
the IMU measurements to initialize the system and estimate
the gravity. The z-axis of the first radar frame is then aligned
with the gravity direction. Because in most cases, the ground
plane is nearly perpendicular to the direction of gravity.
Following the initial setup, all subsequent gravity vectors
within the sliding window are aligned with the initial gravity.
Next, the known radar mounting height and direction of
gravity are used to determine the reference ground plane.
Then we search for potential ground points in the altitude
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interval between —Zground and +Zgroung around the ref-
erence plane and calculate the point’s normal vectors via
Principal Component Analysis (PCA) [25]. Potential ground
points are only classified as ground points if they meet two
key criteria: first, the difference between the normal vector
and the positive gravity vector must fall below a specified
threshold 6,; second, the signal-to-noise ratio of the point
must fall within a range 7,,,;, and .4, Last, the RANSAC
algorithm is applied to refine the ground points. These
criteria ensure that points identified as ground maintain both
the expected orientation consistency with respect to gravity
and the signal reflection characteristics normally expected
from the ground. Once the exact ground points are obtained,
we fit the entire ground plane and filter all the points below
the ground plane, which are called ghost points, and the
points above the ground plane are used for scan registration.
The ground coefficients are added to the graph optimization
as constraints on the z-axis. The ground extraction process is
illustrated in Fig. 3. On the left side of the figure, an image
captured from a front-view camera is displayed, providing
a visual context of the environment. On the right side, the
figure showcases the ground features that have been extracted
from the radar frames, presented from a side view.

Fig. 3: Ground Extraction. left: camera view, right side from
top to down: radar inliers, ground detection and fitting, non-
ground filter

3) Scan Registration: Radar-based scan registration typi-
cally utilizes two matching strategies: scan-to-scan or scan-
to-submap. The scan-to-scan approach aligns two consecu-
tive radar scans to determine point correspondences and has
the advantage of requiring less computation. However, this
method tends to be less reliable, especially with sparse radar
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data or significant changes in the environment, such as during
turns or uphill travel, leading to error accumulation. On the
other hand, the scan-to-submap method involves comparing
the current scan against a locally maintained map, enhancing
robustness and accuracy. But this method also introduces a
large computational load, which reduces the real-time per-
formance of the system. Based on the above two approaches
and inspired by [26], we propose a hybrid registration
approach, i.e., we use scan-to-scan to compute the real-time
radar odometry, and then use scan-to-submap for map-based
odometry correction. As we in [12] mentioned, the Angle of
Arrival (AoA) ¢ of 4D radar signal can be mathematically
calculated as: ¢ = sin‘l(#), where A¢ is the phase
change of the FFT peak, r represents the distance between
consecutive antennas and A is the wavelength. It should be
noted that A¢ depends on sin(p), which exhibits a non-
linear dependency. The approximation of sin(y) as a linear
function is only valid when ¢ is small in magnitude. Thus,
radar measurements exhibit anisotropic uncertainties [8],
meaning the precision varies for different AoAs. Specifically,
the uncertainty associated with each radar point is greater
in the azimuthal direction compared to the radial direction.
And when the azimuth angle is smaller, the measurement
is more accurate. Following these observations, we modify
the Adaptive Probability Distribution-GICP (APDGICP) [6]
to incorporates the spatial probability distribution of each
point into the Generalized Iterative Closest Point (GICP)
framework in accordance with the anisotropy of the 4D radar
measurements. The covariance matrix of the point in the local

o 0 0 ,

frameisS=| 0 o, 0 | witho, = Sg;((“w))r and o, ~
0 0 o,

6;;;((@)7 . 0, 04 and o, represent the probability distributions

related to range, azimuth, and elevation respectively. In
contrast to the original APDGICP, the covariance matrix is
not only related to the radial distance but also to the angle
of arrival. By adding another term 1@ , the anisotropy of

cos(¢p) 1 !
the radar measurement can be modelled in scan registration.

C. IMU Pre-integration

In our framework, the estimation of the continuous state of
the radar is achieved by propagating the IMU data. Should
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there be any changes in the previous state, repropagation
becomes imperative. However, repropagation over the entire
sliding window is computationally intensive. Inspired by
[18], we adopt IMU pre-integration to improve the efficiency
and effectiveness of state estimation. The measurements of
angular velocity and acceleration from an IMU are defined
using (6):

a;, = RMP(a; — g) + b2 +n? 7

where w; and &; are the raw IMU measurements in {} at
time t.w; and &, are influenced by the slowly varying bias
b; and white noise n; - R}'® is the rotation matrix from {}*
to {}* and it is abbreviated here as R;. g is the constant
gravity vector in {}*. Assume that the angular velocity and
acceleration remain constant within a small integration time
At, the velocity, position and rotation of the robot at time
t + At can be easily derived from (6)(7):

Viyar = Ve + gAt + Ry (&, — by —nf') At

1 1 . a a
Prrat = Pt + ViAt + §gAt2 + 5 R (8 —bf —n) At?
Rt—i—At = Rt exp (((;)t — b?) — l’lf) At) (8)

We define the noise from ¢; to ¢; as dv;;,0p;;,0¢;;. The
relative body motion between two timestamps can be then
calculated by:

Avij =R] (vj —vi — gAty;) + vy
1
Api; =R/ (Pj —Pi — Vildty; — ngt?g) + 0pi;
AR;; = R/ R; exp(96,;) ©)
The noise term from ¢; to t; is then normalized linearly:

5Vij = 5Vij71 — ARiyjfl(éjfl — b?)/\égbi,j,lAt
—+ Af{i7j_1n§»‘_1At

1, -
0pij = 0pij—1 + 6Vij—1At — §ARi,j—1
N a 1.4 a
(aj—1 — bf )A(;Qbij—lAtZ + iRivj—lnj—lAt2

0ij = ARIMH;’A + Jpjing At (10)

Applying the above IMU pre-integration model not only
improves the computational efficiency of the system, but also
adds the IMU pre-integration factor to graph optimization.

D. Loop Detection

Inspired by [7] [6], our approach modifies the ScanCon-
text [27], originally designed for LiDAR SLAM, to facil-
itate radar-based loop detection. The original ScanContext
methodology segments a LiDAR point cloud into bins, using
the highest point in each bin to transform the entire cloud
into a representative image. However, due to sparsity of
4D radar scans, we have adapted the method to utilize the
maximum intensity of the radar points for encoding the point
cloud, as high-intensity points are more likely to correspond
to stable features in the environment. Upon identifying a
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loop, the system calculates the relative pose and covariance
matrix between the current keyframe and the corresponding
matching keyframe through scan registration. In addition, we
use the ground feature as a higher-weight constraint to reduce
false detection. This adjustment ensures more reliable and
accurate loop detection in radar SLAM environments.

E. Graph Optimization

As shown in Fig. 4, the factor graph is deployed for
back-end optimization, which incorporates six principal com-
ponents: scan-to-scan registration factors, scan-to-submap
correction factors, IMU pre-integration factors, ego velocity
factors, ground factors and loop closure factors. The state
of each graph node is denoted by the rotation R, position
p in SE(3), velocity vP, bias of acceleration b2, angular
velocity b*”.

« scan-to-scan registration factors are created by scan-to-
scan matching with the rotation Rgg and position pgs.

« scan-to-submap correction factors are generated through
scan-to-submap correction, characterized by the rotation
R and position pgy,.

« IMU pre-integration factors are established between
consecutive frames to assist in predicting the sensor pose
and to maintain the factor graph well-constrained, espe-
cially under conditions of point cloud degeneration.

« ego velocity factors are created between continuous
frames based on the radar ego motion estimation to
constrain the IMU pre-integration and correct the bias.

« ground factors are obtained by detecting and fitting the
ground as a plane equation Ax + By + Cy +D =0 to
minimize the error in z-axis.

o loop closure factors, determined by the intensity Scan-
Context as relative pose between two nodes, are added to
the graph to reduce cumulative drift.

The implementation of a sliding window mechanism serves
to enhance both the accuracy and efficiency of the system. By
constructing sub-maps from radar scans within this window,
denser environmental information is obtained, facilitating
more effective scan-to-submap matching. Simultaneously,
the mechanism of continuously updating and optimizing
a selection of the most recent data guarantees that the
system remains both responsive and precise in its opera-
tions over time. This approach also ensures optimal use of
computational resources, striking a balance between detailed
environmental mapping and the efficient processing of data.
The factor graph is optimized by the g2o library [28] to
obtain a refined pose and velocity.

IV. EXPERIMENT EVALUATION

In order to evaluate the performance of RIV-SLAM on dif-
ferent scenarios and different sensor platforms, we conducted
experiments on the following open-source datasets:

« NTU4DRadLM Dataset [29]: Two platforms are utilized
for data collection, one handcart and one car, equipped
with Oculii Eagle 4D Radar and VectorNav VN100 IMU.
An external Ublox GPS sensor is also mounted on the
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sensor platform, which provides a reference value for ego
velocity estimation.

Kvarntorp Dataset [30]: Two sequences of data under
harsh environmental conditions (one on underground min-
ing and the other on forest) are captured via Sensrad Hugin
Radar sensor and Xsens MTi-30 IMU.

4D Radar Dataset [7]: This dataset is collected with a
ZF FRGen21 4D Radar and a NovAtel GNSS on campus.

The toolbox EVO [31] is used for quantitative trajectory
evaluation, i.e., Absolute Pose Error (APE) and Relative Pose
Error (RPE).

A. Comparison With the State-of-the-Art Method

As shown in TABLE I, we mainly compare our sys-
tem with APDGICP from [6], which is currently the only
open-source full Radar SLAM system to the best of our
knowledge. In the first dataset from NTU4DRadLM, data
is collected using a handheld device moving at low speed
(maximum speed of 1 ms™") in a park lot at NTU university
campus. Therefore, there are two main challenges for Radar
SLAM, one is the removal of dynamic objects (pedestrians
and vehicles), and the other is the drift along the z-axis. Fig.
5c showcases the estimated trajectories by APDGICP and
the proposed system, alongside the ground truth generated by
LiDAR-Visual-Inertial SLAM. As shown in Fig. Se, the pose
drift across the x, y, and z axes illustrates how the system’s
accuracy varies in three-dimensional space over time. Both
methods are robust under dynamic environments, but the
ground extraction of RIV-SLAM significantly improves the
pose accuracy in the z-axis. Apart from that loop detection
provides a great enhancement to both approaches. This obser-
vation is further supported by the results on the car platform.
Accurate GPS data is also available in this sequence, so we
compare the ego motion estimation produced by our system
with the GPS data, and the average relative error is less than
2% for up to 4.5 km of urban driving, which also shows that

779

our system is capable of outputting accurate ego velocity.

The results of the evaluation in the mine and forest
datasets are presented in Fig. 5h and Fig. Sk. However, since
APDGICP failed in both cases, only RIV-SLAM and ground
truth were compared. The possible reasons for the failure
of APDGICP in forest and mine environments are listed as
follows: a) Lack of structured features in forest environments
for scan matching estimation. b) The low density and high
variance of radar data in forests leads to a rapid bias.
c) Although structured features are provided in the mine
environment, the repetition of monolithic features (rock walls
and tunnels) results in a number of false matches. In contrast,
RIV-SLAM with ground extraction, IMU constraints and
velocity factors performs extremely well in both of these
contexts. We also note that the z-axis pose is shifted consid-
erably (nearly 30m) during the 4.5km long mine dataset,
and this will be the focus of our future work to further reduce
the z-axis error using other sensor constraints.

TABLE I: RPE and APE on different datasets

Approaches Apdgicp Proposed-LC
atacete trpe t?"pe tape trpe trpe tape
Daasets | m) (%) (m) | (m) (%)  (m)
parking lot 426  0.0469 3.61 2.58  0.0342 2.25
urban road 4.89 0.0397 59.12 2.69 0.0456  32.62
forest - - - 1.26  0.0125 4.52
mine - - - 2.65 0.0762 58.62

B. Real-Time Performance

The real-time performance of our proposed system is
evaluated by comparing the mean computation time for each
component in all datasets. In general, with the benefit of
sliding window optimization efficiency, the complete system
is able to output real-time pose, ego velocity estimation, and
3D radar maps at a rate of 4Hz (the size of the sliding
window is set to 20 with AMD R5-5600X CPU and 32GB
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Fig. 5: Estimated trajectories of proposed RIV-SLAM, APDGICP, and ground truth

RAM). As the distance of the trajectory increases, the time
taken for loop detection grows rapidly, and this is particularly

obvious with long datasets.

V. CONCLUSIONS

In this paper, we introduce RIV-SLAM by effectively
integrating 4D radar data, IMU measurement, and Doppler
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velocity information into a cohesive graph-based frame-
work. This combination is demonstrated to address some
of the fundamental challenges associated with 4D radar-
based SLAM, including handling sparse and noisy data, as
well as improving z-axis accuracy and ego-motion estimation
under adverse conditions. Our system’s novel approach to
optimizing radar Doppler velocity with IMU data has proven
critical in achieving accurate and stable velocity estimations,
a key differentiator from existing solutions. Furthermore, the
introduction of a ground extraction method tailored for 4D
radar data and a hybrid scan registration strategy significantly
enhances the system’s accuracy and robustness. Evaluations
conducted on various datasets have demonstrated that the
RIV-SLAM system substantially outperforms current state-
of-the-art Radar-SLAM frameworks, particularly in challeng-
ing environments where the precision of movement and envi-
ronmental understanding are paramount. The system’s ability
to produce optimized ego velocity outputs, even in scenarios
like wheel tachometer or GPS failure, underscores its utility
and innovation in the realm of autonomous navigation and
mapping technologies. Future works will extend the proposed
system to include more sensor modalities, such as cameras,
GPS and so on.
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