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Abstract—Simultaneous localization and mapping are essential
components for the operation of autonomous vehicles in unknown
environments. While localization focuses on estimating the ve-
hicle’s pose, mapping captures the surrounding environment to
enhance future localization and decision-making. Localization is
commonly achieved using external GNSS systems combined with
inertial measurement units, LiDARs, and/or cameras. Automotive
radars offer an attractive onboard sensing alternative due to their
robustness to adverse weather and low lighting conditions, com-
pactness, affordability, and widespread integration into consumer
vehicles. However, they output comparably sparse and noisy point
clouds that are challenging for pose estimation, easily leading to
noisy trajectory estimates. We propose a modular approach that
performs radar-inertial SLAM by fully leveraging the character-
istics of automotive consumer-vehicle radar sensors. Our system
achieves smooth and accurate onboard simultaneous localization
and mapping by combining automotive radars with an IMU and
exploiting the additional velocity and radar cross-section informa-
tion provided by radar sensors, without relying on GNSS data.
Specifically, radar scan-matching and IMU measurements are first
incorporated into a local pose graph for odometry estimation. We
then correct the accumulated drift through a global pose graph
backend that optimizes detected loop closures. Contrary to existing
radar SLAM methods, our graph-based approach is divided into
distinct submodules and all components are designed specifically
to exploit the characteristics of automotive radar sensors for scan
matching and loop closure detection, leading to enhanced system
performance. Our method achieves state-of-the-art accuracy on
public autonomous driving data.

Index Terms—Odometry, mapping, localization, SLAM,
autonomous vehicle navigation.
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I. INTRODUCTION

S IMULTANEOUS localization and mapping (SLAM) plays
a crucial role in the operation of autonomous vehicles within

unknown environments. Estimating the pose of an autonomous
car with respect to its surroundings is necessary for path plan-
ning, and collecting the surrounding information helps to local-
ize and make more informed decisions when a place is being
revisited. Pose estimation is commonly carried out using GNSS
sensors. However, GNSS requires satellite visibility, making it
unreliable in GNSS-denied areas like parking lots and tunnels.
In such situations, autonomous vehicles must rely on other
onboard sensing, typically LiDARs and/or cameras, to estimate
their pose over time [41], [42]. These sensors can struggle
under adverse weather or are dependent on good lighting con-
ditions [4]. Several approaches leverage inertial measurement
units (IMUs) [11] as they are economic high-frequency sensors
accurate in short periods of time [13], but considered alone, they
drift substantially.

Automotive radars are robust to bad weather and low lighting
conditions, and their production costs are significantly lower
than those of a LiDAR [8]. Additionally, they have been proven
as successful alternatives for performing odometry and localiza-
tion [6], [8]. A combination of automotive radars and IMUs can
exploit the advantages of both sensing modalities while being
cost-effective and, as we will show, offering the potential for
high accuracy in SLAM.

However, as a result of the radar’s working principle, the
output point cloud of the sensor is sparse and noisy compared
to LiDAR, leading to low performance of methods designed for
LiDARs when directly applied to radar. This limitation is evident
in some radar SLAM approaches that adopt LiDAR techniques
for loop closure detection [21], [50]. Moreover, automotive
radars also provide additional information including a measure-
ment of the point’s relative radial velocity and a radar-cross
section (RCS) related to the target’s reflectivity and angle of
incidence that can be exploited for scan-matching and place
recognition [6], [8], [32].

The main contribution of this work is a novel radar-inertial
SLAM system for autonomous vehicles that fully leverages the
characteristics of automotive radars for odometry estimation and
loop closure, see Fig. 1. We formulate the problem in a modular
manner, with three distinct components: a local pose graph, a
global pose graph, and a loop closure detector. The local pose
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Fig. 1. Qualitative results of our radar-inertial SLAM framework on the
SNAIL-Radar dataset [21]. (left) Radar point cloud map (purple) projected into
a Google Maps satellite view of the location of the dataset. (right) Different
sections of the created map are shown with corresponding colored boxes in the
left image with a visualization of the estimated trajectory (blue).

graph integrates local information from the IMU and radar scan
registration, leveraging the Doppler velocities for scan matching.
This serves as an initial pose estimate for the global pose graph.
Global pose graph optimization is performed including the loop
closures from our loop detector. Our system is open-source1 and
achieves state-of-the-art performance in radar-inertial SLAM
using public autonomous driving data.

In sum, we make three key claims. Our approach (i) achieves
state-of-the-art results in radar-inertial SLAM for autonomous
driving on publicly available data; (ii) introduces a two-layered
system structure for radar-inertial SLAM, comprising a local
graph and a global graph leading to enhanced accuracy; (iii) ex-
ploits the velocity and radar cross-section to improve SLAM
accuracy in sparse and noisy radar scans.

II. RELATED WORK

We present an overview of relevant approaches in odometry
and SLAM, focusing on point cloud-based methods. Our dis-
cussion covers existing LiDAR and radar techniques, as well as
methods that combine these sensors with IMUs.

LiDAR-based odometry and SLAM techniques estimate the
relative pose of the vehicle using onboard LiDAR sensors while
simultaneously creating a map of the environment. Methods that
rely only on LiDAR scans usually perform iterative alignment
between point clouds to estimate the transformation between
them. The most popular approaches in this domain are based on
point-to-point matching [16], [41], plane feature extraction and
matching [10], [12], or a combination of both [29]. LiDAR-only
odometry may degrade in featureless environments [40], which
can be addressed by introducing additional pose information
from an IMU. The high-frequency accelerometer and gyroscope

1https://github.com/PRBonn/RaI-SLAM

readings can be integrated over time [13] to provide an ad-
ditional constraint during odometry. Some approaches exploit
this by combining the LiDAR and IMU measurements with an
iterated Kalman filter [47] to estimate the pose of the robot.
Others employ pose graphs [30], [37], [38] combining IMU
and LiDAR odometry information that can be jointly optimized
within a single graph. A major disadvantage of single-factor
graph approaches like LIO-SAM [38] is that in their imple-
mentation, they do not combine the IMU and radar odometry
information within the global pose estimation. Instead, they use
the IMU as a source of high-frequency odometry but construct
the backend graph containing only the estimated poses from
LiDAR scan registration. More recent approaches propose to
integrate a local submap and a global map [26], [27] maintaining
global consistency. Grisetti et al. [15] also propose a hierarchical
optimization method that combines multiple graphs and enables
accurate odometry. Nevertheless, although LiDAR scans are
dense and high resolution, the sensors are affected by adverse
weather and are hard to pack within consumer autonomous
vehicles. Moreover, due to the sparse and noisy properties of
radar point clouds, applying LiDAR methods to radar scans
reduces pose estimation performance. These challenges call for
SLAM techniques specifically designed for radar data.

Radar-based odometry and SLAM use radar sensors to
estimate the relative pose of the vehicle and construct the envi-
ronment map. It is important to differentiate between two radar
categories, scanning and automotive radars. Scanning radars
provide a 2D intensity image of the vehicle’s surroundings.
While some authors extract features from the intensity images
and match them over time [2], [18], others perform signal
processing techniques to directly estimate the motion from the
radar image scans [46]. Full SLAM approaches with loop closure
have also been proposed proving successful in adverse weather
scenarios [1], [20], [43]. However, similar to LiDARs, scanning
radars are bulky and too expensive to be mounted in consumer
vehicles. In contrast, automotive radar sensors are smaller, more
affordable, and provide a sparse and noisy 3D point cloud that
also contains the Doppler velocity and RCS information of each
point. The earliest work in the automotive radar domain directly
computes the ego-pose based on the Doppler velocities of the
points and the kinematics of autonomous cars [24], [33]. Others
have adapted LiDAR methods to work with radar velocities [33]
or modeled the uncertainty in radar measurements leading to
an enhancement in odometry performance [48]. Another way
of handling sparsity and uncertainty in radar point clouds is
using the normal distribution transform [18], using scan-to-map
matching [8] and/or filtering the scans based on RCS informa-
tion [7], [32]. More recent approaches employ scan-matching
between radar frames [8], [28], [44] or use semantic features
from the environment [22] to estimate the change in pose over
time. Full automotive radar SLAM approaches have also been
proposed optimizing a pose graph with loop closures [17], [19],
[31], [36], [50]. The noisyness of radar scans, however, can
lead to noisy trajectory estimates, which can be improved using
additional input from an IMU. Several methods that combine
automotive radar and IMU information use Kalman filters [3],
[11], [51] or continuous-time optimization [34] to estimate the
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Fig. 2. Structure of our RaI-SLAM system. It consists of three main modules.
The odometry estimation module optimizes the local graph for radar-inertial
odometry and filtering of the point clouds. The mapping module optimizes
the global graph containing odometry information and loop closures. The loop
detection module recognizes revisited places and adds them to the global graph.

pose of the vehicle over time. Recent research has shown how
graph-based methods are advantageous in terms of accuracy and
simplicity of the system [14], [44]. However, they rely on a single
global factor graph that contains all the measurement informa-
tion and utilize LiDAR techniques for loop closure limiting their
performance.

In our method, we propose a full SLAM framework spe-
cific for automotive radars taking inspiration from LiDAR ap-
proaches that maintain multiple pose graphs [26], [27] and
leverage hierarchical pose graph optimization [15]. Our system
is composed of a radar-inertial odometry frontend with a loop
detection and loop closure backend, and leverages the additional
Doppler velocity and RCS information provided by radars for
scan matching and loop closure detection.

III. OUR APPROACH FOR RADAR-INERTIAL SLAM

Our approach estimates the pose of an autonomous vehicle
over time and simultaneously constructs a map of the environ-
ment. Our system architecture comprises three core modules for
odometry pose estimation, loop detection, and global optimiza-
tion, see Fig. 2. Furthermore, having a double-graph structure
enables our system to effectively incorporate short-term and
large-scale information, as shown in Fig. 3. In the odometry
estimation frontend, the local factor graph collects the most
recent information from the IMU and radar scan-matching and
marginalizes nodes outside of a fixed window to maintain com-
putational efficiency. In the backend, the global factor graph
collects the optimized data from the local pose graph, veri-
fies loop detections, and integrates loop closure information,
improving large-scale consistency. This reduces odometry drift
and performs global optimization by combining all available
data.

We employ incremental smoothing and mapping [23] to op-
timize the local and global graphs that compute the state of the
vehicle. The optimization problem for a single factor graph can
be expressed as

x∗ = argmin
x

∑
k

‖fk(xk1
,xk2

, . . . ,xkM
; ok)‖2Σk

, (1)

where x∗ represents the optimal solution to the optimization
problem, Σk is the information matrix associated to the kth

factor, and fk(xk1
,xk2

, . . . ,xkM
; ok) represents the residual

Fig. 3. Diagram of the local and global graph in our system. The scan-matching
and IMU information is collected within the optimization window. The global
graph incorporates this data and performs loop closure optimization within the
estimated poses.

function for the kth factor involving states xk1
,xk2

. . .,xkM
and

the observed measurementok. In the following, we will represent
states and observations from the local and global graphs using
superscripts l and g, respectively.

A. Local Factor Graph

The goal of the local factor graph is to estimate the pose
of the vehicle by combining scan-matching information with
pre-integrated accelerometer and gyroscope measurements. We
exploit the robustness of the scan matcher while leveraging the
short-term accuracy provided by high-frequency IMU sensors
employing two separate factors.

1) Scan-Matching: In our framework, the main source of
odometry is derived from estimating the relative transform
between radar scans using scan-to-map registration. However,
an incorrect alignment of one single radar scan can lead to
an incorrect absolute trajectory estimate. We mitigate this by
utilizing additional sources of information beyond the radar
point coordinates for scan alignment. One approach is to employ
the Doppler velocities during ICP registration [8]. However,
this is sensitive to sensor calibration. We expand on Radar-
ICP,casadoherraez2024icra relying only on the Doppler veloci-
ties as an initial prior for scan registration, and as a pre-filtering
step to remove dynamic object outliers.

Following Kellner et al. [24], given the azimuth angle of
each measurement θi and its measured Doppler velocity vi,
we first estimate the velocity of the automotive radar sensor
vs = [vs,x, vs,y]

� as a least squares problem of the form:

⎡
⎢⎢⎣
v1
...

vN

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
cos(θ1) sin(θ1)

...
...

cos(θN ) sin(θN )

⎤
⎥⎥⎦
[
vs,x

vs,y

]
. (2)

Assuming an autonomous vehicle with no vertical and lateral
movement, the linear velocity vc ∈ R3 and angular rate ωc ∈
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R3 can be computed as

vc = Rc
s vs − ωc × tsc, (3)

whereRc
s ∈ SO(3) and tsc ∈ R3 are the rotation and translation

from the car to the sensor.
Given the time differenceΔtbetween the current and previous

scan, the estimated ego-motion is given as

Tinit =

[
exp ([ωc]×Δt) JvcΔt

0� 1

]
, (4)

where [ωc]× is the skew-symmetric matrix of ωc, and J is the
left Jacobian of SO(3) [39].

We use Tinit ∈ SE(3) as the initial estimate for ICP and
perform scan-to-map matching, which helps to handle the spar-
sity of radar scans. The scan-to-map factor contains its corre-
sponding odometry measurement olodomi

associated to the ICP
transformation estimate Ti according to

f l
odom(x

l
i; o

l
odomi

) = f l
odom(x

l
i;Ti). (5)

2) IMU Preintegration: While we consider scan-matching
as our main source of information within the global graph, the
accelerometer and gyroscope readings from the IMU help to
smooth the trajectory and provide high-frequency pose esti-
mation in environments with few geometric features. The raw
measurements from the sensor are given as

ω̃t = ωt + bgt + ηg
t , (6)

ãt = R�
t (at − g) + bat + ηa

t , (7)

which consist of the true gyroscope and accelerometer measure-
ment ωt,at ∈ R3 an added white noise ηg

t ,η
a
t ∈ R3, an added

bias bgt , b
a
t ∈ R3, the gravity vector g ∈ R3 and the rotation of

the IMU in the world frame Rt ∈ SO(3) [13].
Using the IMU measurements, we estimate the ro-

tation Rt+Δt ∈ SO(3), velocity vt+Δt ∈ R3, and posi-
tion pt+Δt ∈ R3 after a time increment Δt following the in-
tegration of IMU measurements over time [13]:

Rt+Δt = RtExp ((ω̃t − bgt − ηg
t )Δt) , (8)

vt+Δt = vt + gΔt+ Rt(ãt − bat − ηa
t )Δt, (9)

pt+Δt = pt + vtΔt+ (g + Rt(ãt − bat − ηa
t ))

1

2
Δt2. (10)

The estimate of the relative motion of the sensor ΔRi,j ,
Δvi,j , and Δpi,j measured by the IMU between two radar
measurements at times i and j is given by:

ΔRi,j =

j−1∏
k=i

Exp ((ω̃k − bgk + ηg
k)Δt) , (11)

Δvi,j =

j−1∑
k=i

ΔRi,k (ãk − bak − ηa
k)Δt, (12)

Δpi,j =

j−1∑
k=i

[
Δvi,kΔt+ΔRi,k(ãk − bak − ηa

k)
1

2
Δt2

]
.

(13)

The relative motion information estimated from the IMU
is added to the local factor graph as an additional constraint
for the optimization, in a similar manner to LIO-SAM [38].
Our approach, however, is adapted to incorporate radar data
that is optimized together with the IMU factors. Following the
formulation in (1), this results in the following factors with
the corresponding observations of the rotation olRi,i−1

, veloc-

ity olvi,i−1
, and position olpi,i−1

:

f l
IMU(x

l
i−1,x

l
i; o

l
Ri,i−1

) = f l
IMU(x

l
i−1,x

l
i; ΔRi,i−1) (14)

f l
IMU(x

l
i−1,x

l
i; o

l
vi,i−1

) = f l
IMU(x

l
i−1,x

l
i; Δvi,i−1) (15)

f l
IMU(x

l
i−1,x

l
i; o

l
pi,i−1

) = f l
IMU(x

l
i−1,x

l
i; Δpi,i−1). (16)

We jointly optimize the local graph that contains scan match-
ing factors from (5), and the IMU factors from (14), (15), (16)
in a windowed manner, following (1). All the factors outside the
marginalization window are excluded from the optimization,
keeping a bounded size of the optimizable graph.

B. Global Factor Graph

The global factor graph corrects for the drift accumulated in
the local factor graph by performing loop closure optimization.
Two key processes are performed in the global graph, as illus-
trated in Fig. 3. First, we transfer the information from the local
to the global factor graph. This results in a global factor graph
with implicit factors that contain information about the IMU and
scan registration. We, then, include loop closure factors into the
graph to correct odometry drift.

1) Transfer From Local to Global Graph: The data transfer
from the local to the global graph is performed on the latest node
of the windowed optimization. It serves as an initialization of
the global poses before loop closure [15]. We create an implicit
factor containing the relative pose measurement ogi between the
current and the previous scan coming from both, scan-to-map
matching and IMU, following

f(xg
i−1,x

g
i ; o

g
i ) = f(xg

i−1,x
g
i ;T

l−1

i−1Tl
i), (17)

where Tl
i−1,Ti ∈ SE(3) are the poses of the previous and

current frames in the local graph, respectively.
2) Loop Closure: Including the implicit factors in the global

graph does not solve the problem of a drifting trajectory. We
introduce loop detection and closure to correct the accumulated
errors. We employ three criteria for loop closing. First, a radar
place recognition model [6] finds a matching location and returns
a similarity score. Then, an odometry distance measurement
estimates the feasibility of the loop closure in space. Finally, we
propose an intuitive point correspondence metric that replaces
the common ICP distance score to measure the matching qual-
ity [38].

The place recognition module identifies locations that have
been visited in the past. While other works use ScanContext
[44], [45], learning-based approaches [6] have shown superior
place recognition performance. We employ SPR [6] as our scan
encoder, which captures point-neighbor information from the
radar scan and an overall RCS distribution of the point cloud.
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We match two radar scans if

‖Xquery −Xmatch‖ < δPR, (18)

where δPR is a predefined threshold and Xquery,Xmatch ∈ R256

are the SPR encodings of the query and matching scans.
The odometry distance metric is inspired by TBV-SLAM [1]

and verifies that the position of the query frame tquery ∈ R3

and matching frame tmatch ∈ R3 are within a reasonable spatial
threshold δodom proportional to the accumulated length of the
current trajectory dlength:

‖tquery − tmatch‖
dlength

< δodom. (19)

After a loop candidate has been detected based on similarity
and odometry distance, we use ICP to estimate the transfor-
mation Tq

m ∈ SE(3) between the match and the query frames.
However, we observe that the distance score used in LiDAR
approaches is not a reliable matching quality measure in auto-
motive radars. While in LiDAR a low average distance between
point correspondences indicates a good scan alignment, this is
not always the case in sparse and noisy radar point clouds. Good
alignments may still return high average distance values due
to noise outliers, bad alignments may still return reasonable
average distance values, and if two radar scans are taken at
different times, the amount of noise and reflection outliers may
vary.

To address these limitations, we propose a new scoring
method for loop-matching quality. Instead of using the mean
distance of corresponding points, we measure that the number
of points after ICP registration that have a correspondence within
a radius r is greater than a threshold δd. This gives an intuitive
and reliable estimate of the matching quality. The comparison
of the score with δd is given as:⎡

⎣ 1

|C|
∑

(q,m)∈C
I{‖q−m‖ < r}

⎤
⎦ > δd, (20)

where (q,m) ∈ C is the set of correspondences between queryq
and matching scan m, and I{c} is the indicator function, return-
ing 1 if condition c is true, and 0 otherwise.

Once the three criteria have been verified and the transfor-
mation between query and match Tq

m has been computed, we
express the final loop factor with the corresponding observation
ogloopi

following

f(xg
q ,x

g
m; ogloopi

) = f(xg
q ,x

g
m;Tq−1

m ). (21)

The global graph containing the implicit factors from (17), and
the loop factors in (21), is optimized independent of the local
graph, following the procedure in (1). We optimize the global
graph including all transferred and loop factors as a backend in
a separate thread.

IV. EXPERIMENTAL EVALUATION

The main focus of our research is to develop a radar-inertial
SLAM system for autonomous vehicles that exploits the infor-
mation provided by radar sensors for large-scale pose estimation

and mapping. We present our experiments to show the capabil-
ities of our method, called RaI-SLAM. The results explicitly
support our key claims that our approach: (i) achieves state-of-
the-art results in radar-inertial SLAM for autonomous driving
on publicly available data; (ii) introduces a two-layered system
structure for radar-inertial SLAM, comprising a local graph and
a global graph leading to enhanced accuracy; (iii) exploits the
velocity and radar cross-section to improve SLAM accuracy in
sparse and noisy radar scans.

A. Implementation Details and Experimental Setup

We implement RaI-SLAM using ROS2 for communication
between modules and a GTSAM [9] factor graph optimiza-
tion framework, employing a fixed-lag smoother for the local
graph frontend and assuming constant covariance values for
odometry and loop closure. We evaluate our approach on the
SNAIL-Radar [21] and HeRCULES [25] datasets, as other
existing datasets have either short sequences without loop clo-
sures [5], [35], inaccuracies in the ground truth [49], or no
IMU sensors [31]. Within the SNAIL-Radar dataset, we select
sequences 20240113/3, 20240113/1, 20240115/2, 20240123/2,
and 20240123/3, which cover the entire area of the dataset and
are recorded using an SUV vehicle. From the HeRCULES [25]
dataset, we select five diverse sequences containing loop clo-
sures, “Mountain Day 1”, “Library Day 1”, “Sports Complex
Day 1”, “Parking Lot 3 Night”, and “Street Day 1”. For the
loop closure module with SPR [6], we train the model on the
4DRadarDataset [31], which also uses a different radar sensor
as the SNAIL-Radar dataset, indicating the generalizability of
our system. We use the ARS548 radar for the evaluation of all
methods except in the comparison with 4DRadarSLAM [50]
whose parameters have been optimized by the original authors
for the Oculii Eagle. We evaluate all trajectories on the plane,
discarding all vertical movement. The metrics used for evalua-
tion consist of the relative translation (RTE) and rotation (RRE)
error between pose estimations measuring short-term accuracy,
and the absolute trajectory error (ATE) to estimate absolute
performance. The best and second best results on automotive
radar sensors are bolded and underlined, respectively.

B. Comparison With the State of the Art

The first experiment evaluates the performance of our method
and demonstrates that it achieves state-of-the-art results in
publicly available automotive radar-inertial SLAM data. We
compare our method against other approaches in the SNAIL-
Radar dataset [21], and then compare the best-performing meth-
ods in the HeRCULES dataset [25]. Quantitative results are
shown in Tabs. I and II, and qualitative results are presented
in Figs. 4, 5 and 6.

The baseline methods employed in the comparison are RIV-
SLAM [44], which leverages a single graph integrating all sensor
data; Graph-RIO [14], which uses a factor graph but excludes
scan-matching and loop closure; 4DRadarSLAM [50], which
relies solely on the Oculii radar data without IMU information;
Radar ICP [8], a state-of-the-art radar odometry method; KISS-
ICP [41], a LiDAR odometry approach applied directly on radar
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TABLE I
COMPARISON TO STATE-OF-THE-ART RADAR AND LIDAR ODOMETRY AND SLAM APPROACHES ON THE SNAIL-RADAR DATASET [21]

TABLE II
COMPARISON OF THE BEST-PERFORMING ODOMETRY AND SLAM METHODS ON THE HERCULES DATASET [25]

Fig. 4. Pose estimation (shown in red) and mapping results for automotive sequences of the SNAIL-Radar [21] and HeRCULES [25] datasets. Snapshots (b) and
(d) show segments with loop closures. Movement in the vertical direction has been omitted for the map plots.

and LiDAR point clouds; and LIO-SAM [38], a LiDAR-inertial
odometry system used in this work to benchmark sensor perfor-
mance.

As it can be observed in Figs. 5 and 6, LiDAR approaches
like KISS-ICP applied to radar point clouds have an increased
drift, sometimes leading to failures in scenarios with few geo-
metric features like in the long road from sequence 2024123/2.
Odometry-only Radar-ICP has less drift but lacks loop clo-
sure to correct it, visible in sequences like “Mountain Day 1”.
RIV-SLAM achieves high overall relative and absolute accu-
racy but accumulates drift over longer sequences. It relies on
intensity ScanContext [45] and the regular ICP distance score,
failing to detect certain loops and correct accumulated errors.
Our method, which relies on a radar-oriented loop detection
procedure, identifies the loops and effectively integrates local
and global information, leading to a lower mean ATE while
maintaining competitive accuracy for relative pose estimation.
RIV-SLAM also fails in sequence “Sports Complex Day 1”,

where an incorrect point cloud alignment leads to an inconsis-
tent trajectory. This is prevented with our velocity-based ICP
initialization. Additionally, our radar-inertial SLAM technique
is on par with LiDAR approaches. Specifically, it presents an
advantage in the highly dynamic scenario from “Street Day
1”, where the LiDAR odometry approach fails to complete the
sequence due to the high amount of point outliers corresponding
to moving objects.

C. Ablation Studies

The second experiment evaluates how our two-layered graph
structure and how exploiting the characteristics of radar point
clouds for odometry and loop closure contribute to the fi-
nal accuracy. We perform the evaluation on the sequence
20240115/2 [21] and “Library Day 1” [25] as good examples of
long trajectories that include loops. The main components are
the velocity prior for scan-matching, the local graph with and

Authorized licensed use limited to: Julius-Maximilians-Universitaet Wuerzburg. Downloaded on August 18,2025 at 11:21:10 UTC from IEEE Xplore.  Restrictions apply. 



HERRAEZ et al.: RAI-SLAM: RADAR-INERTIAL SLAM FOR AUTONOMOUS VEHICLES 5263

Fig. 5. Qualitative comparison of our approach to the state of the art on the
SNAIL-Radar dataset [21].

Fig. 6. Qualitative comparison of our approach to the state of the art on the
HeRCULES dataset [25].

without IMU, and the global loop closure for drift correction.
The results are shown in Table III.

Employing the estimated ego velocity as the prior for ICP
results in a notable improvement of the absolute errors. Without
the velocity prior, a wrong match between the current scan
and the local map would lead to an incorrect trajectory for the
following measurements, affecting the absolute trajectory error.
Furthermore, adding the IMU measurements reduces relative
errors between scans but preserves a similar absolute error due

TABLE III
ABLATION STUDIES ON SEQUENCE 20240115/2 FROM THE SNAIL-RADAR

DATASET [21] AND “LIBRARY DAY 1” FROM THE HERCULES [25] DATASET

to the way the local factor graph is constructed. Adding the loop
closure additionally improves the global results, resulting in a
system with reduced local and global trajectory errors.

Based on the results of pose graph optimization with constant
covariances in sequence “20240115/2”, however, we often see
that well-aligned local pose estimates can get misaligned in the
global optimization. Therefore, the estimation of realistic pose
and loop closure covariances is a promising avenue of future
research that could potentially increase the consistency of the
resulting trajectory and map.

V. CONCLUSION

In this letter, we presented a system for radar-inertial SLAM
that exploits the advantages of automotive radars and deals
with their sparse and noisy output point clouds without relying
on external GNSS information. We proposed a novel system
composed of a local and global pose graph that incorporates IMU
and radar information. Our odometry frontend keeps a low local
translation and rotation error and our loop closure procedure
reduces drift in the absolute trajectory. We implemented and
evaluated our approach on real-world scenarios supporting all
claims made in this letter. The experiments suggest that our
method achieves high performance for estimating the global
pose of the vehicle by solely relying on onboard radar-inertial
sensing, with each component of the system contributing to the
final pose estimation accuracy.
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